Assessment of Cross-correlations Between Selected Macromolecules in Urine of Children with Idiopathic Hypercalciuria

Katarzyna Jobs, Anna Jung, Slawomir Lewicki, Piotr Murawski, Leszek Paczek, Robert Zdanowski

Abstract


394

Purpose: The aim of the study was assessment of four selected macromolecules level: osteopontin, calgranulin, uromodulin and bikunin in fresh morning urine sample in children with nephrolithiasis in the course of idiopathic hypercalciuria.
Materials and Methods: The study included 90 subjects aged from 12 months to 18 years. The study group comprised 57 subjects- children with urinary tract lithiasis in the course of idiopathic hypercalciuria and the control group - 33 healthy children with no history of urolithiasis. Determinations of osteopontin, calgranulin, uromodulin and bikunin levels in the first morning urine were performed.
Results: The study group had a significantly decreased osteopontin excretion and significantly increased bikunin
excretion, and increased, however statistically nonsignificant, calgranulin excretion in comparison with the control group. Uromodulin excretion did not differ between groups. In both groups a statistically significant positive correlation was observed between uromodulin and bikunin levels.
Conclusion: Children with urinary tract lithiasis in the course of idiopathic hypercalciuria reveal a different distribution of the study proteins than a healthy population.

Full Text:

PDF

98

References


Bihl G, Meyers A. Recurrent renal stone disease – advances in pathogenesis and clinical management. The Lancet 2001; 358:651-56.

Lopez M, Hoppe B. History, epidemiology and regional diversities of urolithiasis. Pediatr Nephrol. 2010; 25:49-59.

Evan AP. Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr Nephrol. 2010; 25:831-41.

Jobs K, Jurkiewicz B, Bochniewska V, Straż-Żebrowska E, Jung A. Kombinacja małoinwazyjnych metod w leczeniu kamicy układu moczowego – opis trzech przypadków. Przegl Pediatr. 2012; 42:100- 2.

Hoppe B, Kemper MJ. Diagnostic examination of the child with urolithiasis or nephrocalcinosis. Pediatr Nephrol. 2010; 25:403-13.

Copelovitch L. Urolithiasis in Children Medical Approach. Pediatr Clin North Am. 2012; 59:881-96.

Bochniewska V, Jung A, Goszczyk A, Muszyńska J, Kraś E. Nephrolithiasis - inhibitors and promotors of crystalization.

Pediatr Med Rodz. 2006; 2:91-9.

Moreira Guimarães Penido MG, de Sousa Tavares M, Campos Linhares M, Silva Barbosa AC, Cunha M. Longitudinal study

of bone mineral density in children with idiopathic hypercalciuria. Pediatr Nephrol 2012;27:123-130.

Alpay H, Ozen A, Gokce I, Biyikli N. Clinical and metabolic features of urolithiasis and microlithiasis in children. Pediatr Nephrol. 2009; 24:2203-9.

Kalorin CM, Zabinski A, Okpareke I, White M, Kogan BA. Pediatric urinary stone diseasedoes age matter? J Urol. 2009; 181:2267-71.

Albright F, Henneman P, Benedict P, Forbes A. Idiopathic hypercalciuria. A preliminary report. Proc R Soc Med. 1953, 46:1077–81.

Green W, Ratan H. Molecular mechanisms of urolithiasis. Urology 2013;81:701-4.

Shakhssalim N, Gilani KR, Parvin M, Torbati PM, et al. An assessment of parathyroid hormone, calcitonin, 1,25 (OH)2 vitamin D3, estradiol and testosterone in men with active

calcium stone disease and evaluation of its biochemical risk factors. Urol Res. 2011;39:1-7

Li WM, Chou YH, Li CC, et al. Association of body mass index and urine pH in patients with urolithiasis. Urol Res. 2009; 37:193-6.

Okumura N, Tsujihata M, Momohara C. Diversity in protein profiles of individual calcium oxalate kidney stones. PloS ONE

; 8:e68624. doi: 10.1371/journal. pone.0068624.

Zieliński J, Pietrek J. Calcium lithiasis in the urinary tract and its connection with metabolic disorders- Part I. Urol Pol. 1978; 31:1-4.

Aggarwal KP, Narula S, Kakkar M, Tandon C. Nephrolithiasis: Molecular Mechanism of Renal Stone Formation and the Critical Role Played by Modulators. Biomed Res Int. 2013: 292953. doi:10.1155/2013/292953.

Azaryan E, Malekaneh M, Shemshadi Nejad M, Haghighi F. Therapeutic effects of aqueous extracts of cerasus avium stem on ethylene glycol- induced kidney calculi in rats. Urol J. 2017;14:4024-9.

Schwartz GJ, Muñoz A, Schneider MF, et al. New equations to estimate GFR In children with CKD. J Am Soc Nephrol .2009; 20:629-37.

Różański W, Klimek L, Jakubowski K, Miękoś E, Górkiewicz Z. Non-crystalline components of urinary stones. Urol Pol. 2003;

:1-3.

Gill WB, Karesh JW, Garsin L, Roma MJ. Inhibitory effects of urinary macromolecules on the crystallization of calcium oxalate.

Invest Urol. 1997; 15:95-9.

Sheng X, Ward MD, Wesson JA. Adhesion between molecules and calcium oxalate crystals critical interactions in kidney stone

formation. J Am Chem Soc. 2003; 125:2854-55.

Argade S, Shaw T, Chen T, et al. The role of Tamm-Horsefall protein in urinary stone disease. J Urol. 2013; 189:e945-6.

Wolf MT, Wu X, Huang CL. Uromodulin upregulates TRPV5 by impairing caveolinmediated endocytosis. Kidney Int. 2013;

:130-7.

Viswanathan P, Rimer JD, Kolbach AM, Ward MD, Kleinman JG, Wesson JA. Calcium oxalate monohydrate aggregation induced by

aggregation of desialylated Tamm – Horsfall protein. Urol Res. 2011; 39:269-82.

Wikiera Magott I, Naleśniak M, Hurkacz M, Głowacka K, Zwolińska D. Selected crystallization inhibitors in urine in case of

menace calculi in the urinary tract and kidney symptoms in children. Stand Med. 2007; T4:45-9.

Baggio B, Gambaro G, Favaro S, et al. Juvenile renal stone disease a study of urinary promoting and inhibiting factors. J Urol. 1983; 130:1133–5.

Jaggi M, Nakagawa Y, Zipperle L, Hess B. Tamm- Horsfall protein in recurrent calcium kidney stone formers with positive family history abnormalities in urinary excretion, molecular structure and function. Urol Res. 2007; 35:55-62.

Glauser A, Hochreiter W, Jaeger P, Hess B. Determinants of urinary excretion of Tamm-Horsfall protein in non – selected kidney stone formers and healthy subjects. Nephrol Dial

Transplant. 2000; 15:1580-7.

Momohara C, Tsujihata M, Yoshioka I, Tsujimura A, Nonomura N, Okuyama A. Mechanism underlying the low prevalence of pediatric calcium oxalate urolithiasis J Urol. 2009; 182:1201-09.

Mushtaq S, Siddiqui AA, Naqvi ZA, et al. Identification of myeloperoxidase, alphadefensin and calgranulin in calcium oxalate

renal stones. J Clin Chim Acta. 2007; 384:41-7.

Bergsland KJ, Kelly JK, Coe BJ, Coe FL. Urine protein markers distinguish stone – forming from non-stone-forming relatives of

calcium stone formers. Am J Physiol Renal Physiol. 2006; 291:530-6.

Atmani F, Khan SR. Role of urinary bikunin in the inhibition of calcium oxalate crystallization. J Am Soc Nephrol. 1999; 10 Suppl:385-8.

De Yoreo JJ, Qiu SR, Hoyer JR. Molecular modulation of calcium oxalate crystallization. Am J Physiol Renal Physiol. 2006; 291:F1123-31.

Médétognon-Benissan J, Tardivel S, Hennequin C, Daudon M, Drüeke T, Lacour B. Abstract Inhibitory effect of bikunin on calcium oxalate crystallization in vitro and urinary bikunin decrease in renal stone formers. Urol Res. 1999; 27:69-75.

Okada A, Nomura S, Saeki Y, et al. Morphological conversion of calcium oxalate crystals into stones is regulated by osteopontin in mouse kidney. J Bone Miner Res. 2008; 23:1629-37.

W Wesson JA, Johnson RJ, Mazzali M, et al. Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 2003;14:139-147.

Mazzali M, Kipari T, Ophascharoensuk V, Wesson JA, Johnson R, Hughes J. Osteopontin – a molecule for all seasons. QJM. 2002; 95:3-13.

Li X, Liu K, Pan Y, et al. Roles of osteopontin gene polymorphism (rs1126616), osteopontin levels in urine and serum, and the risk of urolithiasisa meta- analysis. Biomed Res Int

.2015: 315043. doi:10.1155/2015/315043.

Yasui T, Fujita K, Hayashi Y, et al. Quantification of osteopontin in the urine of healthy and stone- forming men. Urol Res. 1999; 27:225-30.

Langdon A, Wignall GR, Rogers K, et al. Kinetics of calcium oxalate crystal growth in the presence of osteopontin isoforms an analysis by scanning confocal interference microcopy. Calcif Tissue Int. 2009; 84:240-8.

Safarinejad MR, Shafiei N, Safarinejad S. Associstion between polymorphisms in osteopontin gene (SPP1) and first episode

calcium oxalate urolithiasis. Urolithiasis 2013; 41:303-13.

Tugcu V, Simsek A, Tarhan T, et al. OPN gene polymorphism (Ala250) and lower serum OPN levels are associated with urolithiasis. Ren Fail. 2013; 35: 825-9.

Khan SR. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation evidence from clinical and experimental investigations. J Urol. 2013;

:803-11.

Hong SH, Lee HJ, Sohn EJ, et al. Antinephrolithic potential of resveratrol via inhibition of ROS, MCP-1, hyaluronan and

osteopontin in vitro and in vivo. Pharm Reports. 2013;65:970-9.




DOI: http://dx.doi.org/10.22037/uj.v0i0.3956


Creative Commons License 
This work is licensed under a Creative Commons Attribution 3.0 License