A study on Carbon Nanotube-Gene Interaction in Induction of Glial Cells to Neuron Cell

Morteza Aliashrafi, Masoumeh Farahani, Amirjafar Adibi, hakimeh zali

Abstract


65

Introduction:

Reprograming different cell to neuron have been yet remain attractive field in in regenerative medicine, so discovery new methods or improve exist methods could be helpful. In this study, we analysis the transcriptome data of glia and neuron cells to determine the different gene expression in both groups. Then based on this transcriptom data determine the gene chemical interaction to find the most important chemical structure which induce glia cell to neurons.

Material and methods:

Data extract from transcriptome database related rat cerebral cortex cells generated by RNAseq technique. By comparison neuron against glia cells (astrocyte, oligodenderocyte and microglia) determined different gene expression. In CTD database determined the most important chemical interact with this gene set. Then by using genetrail2 database determined mechanism of gene set associated to chemicals and miRNA enriched.

Results:

Result determined different chemical with risk factor and protective factor properties related to 500 genes that enriched in neuron in comparison with glia cells. Carbon nanotube is the first important chemicals that interact with 75 genes of 500. Gene ontology analysis determined carbon nanotube effect on genes that induce neurogenesis, neurodevelopment and differentiation. Genetrail2 release the 29 significant miRNAs enriched in gene interacts with carbon nanotube in which miR-34a and miR-449a are the most significant molecules. Network analysis on these genes represents Kit, Gria1, Syt1, Rab3c and Tubb3 have central roles in neurogenesis by carbon nanotube.

Conclusion:

In sum up, carbon nanotube is the electrical stimulation biomaterial that are biocompatible to induce glia cell to neuron which apply as devise lonely or combination with cell in damage part of neural tissue.


Keywords


tissue engineering, regenerative medicine, neuron cell, glia cell, carbon nanotube

Full Text:

PDF

69

References


Heinrich, C., Gascón, S., Masserdotti, G., Lepier, A., Sanchez, R., Simon-Ebert, T., Schroeder, T., Götz, M. and Berninger, B., 2011. Generation of subtype-specific neurons from postnatal astroglia of the mouse cerebral cortex. Nature protocols, 6(2), pp.214-228.

Chung, K.F., Qin, N., Androutsellis-Theotokis, A., Bornstein, S.R. and Ehrhart-Bornstein, M., 2011. Effects of dehydroepiandrosterone on proliferation and differentiation of chromaffin progenitor cells. Molecular and cellular endocrinology, 336(1), pp.141-148.

Kothapalli, C.R. and Kamm, R.D., 2013. 3D matrix microenvironment for targeted differentiation of embryonic stem cells into neural and glial lineages. Biomaterials, 34(25), pp.5995-6007.

Pertile, R.A., Cui, X. and Eyles, D.W., 2016. Vitamin D signaling and the differentiation of developing dopamine systems. Neuroscience, 333, pp.193-203.

Santa-Maria, I., Alaniz, M.E., Renwick, N., Cela, C., Fulga, T.A., Van Vactor, D., Tuschl, T., Clark, L.N., Shelanski, M.L., McCabe, B.D. and Crary, J.F., 2015. Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau. The Journal of clinical investigation, 125(2), p.681.

Bruno, I.G., Karam, R., Huang, L., Bhardwaj, A., Lou, C.H., Shum, E.Y., Song, H.W., Corbett, M.A., Gifford, W.D., Gecz, J. and Pfaff, S.L., 2011. Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Molecular cell, 42(4), pp.500-510.

Tam, R.Y., Fuehrmann, T., Mitrousis, N. and Shoichet, M.S., 2014. Regenerative therapies for central nervous system diseases: a biomaterials approach. Neuropsychopharmacology, 39(1), pp.169-188.

Subramanian, A., Krishnan, U.M. and Sethuraman, S., 2009. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. Journal of biomedical science, 16(1), p.108.

Wu, J., Xie, L., Lin, W.Z.Y. and Chen, Q., 2017. Biomimetic nanofibrous scaffolds for neural tissue engineering and drug development. Drug Discovery Today.

Addis, R.C., Hsu, F.C., Wright, R.L., Dichter, M.A., Coulter, D.A. and Gearhart, J.D., 2011. Efficient conversion of astrocytes to functional midbrain dopaminergic neurons using a single polycistronic vector. PloS one, 6(12), p.e28719.

Aravantinou-Fatorou, K., Ortega, F., Chroni-Tzartou, D., Antoniou, N., Poulopoulou, C., Politis, P.K., Berninger, B., Matsas, R. and Thomaidou, D., 2015. CEND1 and NEUROGENIN2 reprogram mouse astrocytes and embryonic fibroblasts to induced neural precursors and differentiated neurons. Stem cell reports, 5(3), pp.405-418.

Aliashrafi, M., Zali, H. and Jafari, A., 2016. New Insight in Neuron Regeneration: Induction of Glia Cell to Neuron Cell. INTERNATIONAL JOURNAL OF ADVANCED BIOTECHNOLOGY AND RESEARCH, 7(2), pp.565-572.

Zhang, Y., Chen, K., Sloan, S.A., Bennett, M.L., Scholze, A.R., O'Keeffe, S., Phatnani, H.P., Guarnieri, P., Caneda, C., Ruderisch, N. and Deng, S., 2014. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. Journal of Neuroscience, 34(36), pp.11929-11947.

Davis, A.P., Murphy, C.G., Saraceni-Richards, C.A., Rosenstein, M.C., Wiegers, T.C. and Mattingly, C.J., 2008. Comparative Toxicogenomics Database: a knowledgebase and discovery tool for chemical–gene–disease networks. Nucleic acids research, 37(suppl_1), pp.D786-D792.

Stöckel, D., Kehl, T., Trampert, P., Schneider, L., Backes, C., Ludwig, N., Gerasch, A., Kaufmann, M., Gessler, M., Graf, N. and Meese, E., 2016. Multi-omics enrichment analysis using the GeneTrail2 web service. Bioinformatics, 32(10), pp.1502-1508.

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research, 13(11), pp.2498-2504.

Maere, S., Heymans, K. and Kuiper, M., 2005. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 21(16), pp.3448-3449.

Chao, T.I., Xiang, S., Chen, C.S., Chin, W.C., Nelson, A.J., Wang, C. and Lu, J., 2009. Carbon nanotubes promote neuron differentiation from human embryonic stem cells. Biochemical and biophysical research communications, 384(4), pp.426-430.

Freire, E., Gomes, F.C., Linden, R., Neto, V.M. and Coelho-Sampaio, T., 2002. Structure of laminin substrate modulates cellular signaling for neuritogenesis. Journal of cell science, 115(24), pp.4867-4876.

Balasubramanian, K. and Burghard, M., 2006. Biosensors based on carbon nanotubes. Analytical and bioanalytical chemistry, 385(3), pp.452-468.

Harrison, B.S. and Atala, A., 2007. Carbon nanotube applications for tissue engineering. Biomaterials, 28(2), pp.344-353.

Jan, E. and Kotov, N.A., 2007. Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano letters, 7(5), pp.1123-1128.

Sridharan, I., Kim, T. and Wang, R., 2009. Adapting collagen/CNT matrix in directing hESC differentiation. Biochemical and biophysical research communications, 381(4), pp.508-512.

Quattrocchi, C.C., Wannenes, F., Persico, A.M., Ciafré, S.A., D'Arcangelo, G., Farace, M.G. and Keller, F., 2002. Reelin is a serine protease of the extracellular matrix. Journal of Biological Chemistry, 277(1), pp.303-309.

Zaki, M., Shehab, M., El‐Aleem, A.A., Abdel‐Salam, G., Koeller, H.B., Ilkin, Y., Ross, M.E., Dobyns, W.B. and Gleeson, J.G., 2007. Identification of a novel recessive RELN mutation using a homozygous balanced reciprocal translocation. American Journal of Medical Genetics Part A, 143(9), pp.939-944.

Impagnatiello, F., Guidotti, A.R., Pesold, C., Dwivedi, Y., Caruncho, H., Pisu, M.G., Uzunov, D.P., Smalheiser, N.R., Davis, J.M., Pandey, G.N. and Pappas, G.D., 1998. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proceedings of the National Academy of Sciences, 95(26), pp.15718-15723.

Guidotti, A., Auta, J., Davis, J.M., Gerevini, V.D., Dwivedi, Y., Grayson, D.R., Impagnatiello, F., Pandey, G., Pesold, C., Sharma, R. and Uzunov, D., 2000. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Archives of general psychiatry, 57(11), pp.1061-1069.

Haas, C.A., Dudeck, O., Kirsch, M., Huszka, C., Kann, G., Pollak, S., Zentner, J. and Frotscher, M., 2002. Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. Journal of Neuroscience, 22(14), pp.5797-5802.

Wirths, O., Multhaup, G., Czech, C., Blanchard, V., Tremp, G., Pradier, L., Beyreuther, K. and Bayer, T.A., 2001. Reelin in plaques of β-amyloid precursor protein and presenilin-1 double-transgenic mice. Neuroscience letters, 316(3), pp.145-148.

Samayawardhena, L.A. and Pallen, C.J., 2008. Protein-tyrosine phosphatase α regulates stem cell factor-dependent c-Kit activation and migration of mast cells. Journal of Biological Chemistry, 283(43), pp.29175-29185.

Chen, S., Burgin, S., McDaniel, A., Li, X., Yuan, J., Chen, M., Khalaf, W., Clapp, D.W. and Yang, F.C., 2010. Nf1−/− Schwann cell-conditioned medium modulates mast cell degranulation by c-Kit-mediated hyperactivation of phosphatidylinositol 3-kinase. The American journal of pathology, 177(6), pp.3125-3132.

Agostini, M., Tucci, P., Steinert, J.R., Shalom-Feuerstein, R., Rouleau, M., Aberdam, D., Forsythe, I.D., Young, K.W., Ventura, A., Concepcion, C.P. and Han, Y.C., 2011. microRNA-34a regulates neurite outgrowth, spinal morphology, and function. Proceedings of the National Academy of Sciences, 108(52), pp.21099-21104.

Huttlin, E.L., Jedrychowski, M.P., Elias, J.E., Goswami, T., Rad, R., Beausoleil, S.A., Villén, J., Haas, W., Sowa, M.E. and Gygi, S.P., 2010. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell, 143(7), pp.1174-1189.

Tischfield, M.A., Baris, H.N., Wu, C., Rudolph, G., Van Maldergem, L., He, W., Chan, W.M., Andrews, C., Demer, J.L., Robertson, R.L. and Mackey, D.A., 2010. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell, 140(1), pp.74-87.

Hazeltine, L.B., Selekman, J.A. and Palecek, S.P., 2013. Engineering the human pluripotent stem cell microenvironment to direct cell fate. Biotechnology advances, 31(7), pp.1002-1019.

Schouenborg, J., Garwicz, M. and Danielsen, N., 2011. Interfacing neurons with carbon nanotubes:(re) engineering neuronal signaling. Brain Machine Interfaces: Implications for Science, Clinical Practice and Society, 194, p.241.

Malarkey, E.B. and Parpura, V., 2010. Carbon nanotubes in neuroscience. In Brain Edema XIV (pp. 337-341). Springer, Vienna.

Fabbro, A., Prato, M. and Ballerini, L., 2013. Carbon nanotubes in neuroregeneration and repair. Advanced Drug Delivery Reviews, 65(15), pp.2034-2044.




DOI: https://doi.org/10.22037/rrr.v2i2.18978

Refbacks

  • There are currently no refbacks.


ISSN:2476-5163 (Print); 2476-5171 (Online)

 
Creative Commons LicenseThe Journal of "Regeneration, Reconstruction, & Restoration" is licensed under a Creative Commons Attribution 4.0 International License.