Bone Tissue Engineering in the Maxillofacial Region: The State-of-the-Art Practice and Future Prospects

Sahba Mobini, Ashraf Ayoub

Abstract


455

Bone reconstruction in the maxillofacial region is a challenging task due to the exclusive anatomical complexity of the tissue, aesthetic requirements and functional demands. The gold standard method for maxillofacial reconstruction is based on autogenous bone grafting, which is associated with certain drawbacks. In this review, we describe recent bone tissue engineering approaches in reconstructive surgery of the maxillofacial region. Proper cell sources, scaffolds, signaling molecules as well as recent bioreactor technology are discussed. 


Keywords


tissue engineering, Maxillofacial region, Clinical approaches

Full Text:

PDF

190

References


Hollinger JO, Winn SR. Tissue engineering of bone in the craniofacial complex. Ann N Y Acad Sci. 1999;875:379-85.

Asahina I, Watanabe M, Sakurai N, Mori M, Enomoto S. Repair of bone defect in primate mandible using a bone morphogenetic protein (BMP)-hydroxyapatite-collagen composite. J Med Dent Sci. 1997;44(3):63-70.

Gazdag AR, Lane JM, Glaser D, Forster RA. Alternatives to Autogenous Bone Graft: Efficacy and Indications. J Am Acad Orthop Surg. 1995;3(1):1-8.

Perciaccante V, Jeffery J. Oral & maxillofacial Reconstruction. In: AbuBake O, Benson K, editors. Oral & Maxillofacil Secrets. 2 ed. PA, Philiadephia, USA: Elsevier. p. 389-403.

Kessler P, Thorwarth M, Bloch-Birkholz A, Nkenke E, Neukam FW. Harvesting of bone from the iliac crest--comparison of the anterior and posterior sites. Br J Oral Maxillofac Surg. 2005;43(1):51-6.

Zimmermann G, Moghaddam A. Allograft bone matrix versus synthetic bone graft substitutes. Injury. 2011;42 Suppl 2:S16-21.

Shrivats AR, McDermott MC, Hollinger JO. Bone tissue engineering: state of the union. Drug Discov Today. 2014;19(6):781-6.

Robey PG. Cell sources for bone regeneration: the good, the bad, and the ugly (but promising). Tissue Eng Part B Rev. 2011;17(6):423-30.

Colnot C. Cell sources for bone tissue engineering: insights from basic science. Tissue Eng Part B Rev. 2011;17(6):449-57.

Musina RA, Bekchanova ES, Belyavskii AV, Sukhikh GT. Differentiation potential of mesenchymal stem cells of different origin. Bull Exp Biol Med. 2006;141(1):147-51.

Peng L, Jia Z, Yin X, Zhang X, Liu Y, Chen P, Ma K, Zhou C. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev. 2008;17(4):761-73.

Niemeyer P, Kornacker M, Mehlhorn A, Seckinger A, Vohrer J, Schmal H, Kasten P, Eckstein V, Sudkamp NP, Krause U. Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic differentiation in vitro. Tissue Eng. 2007;13(1):111-21.

Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A. 2002;99(13):8932-7.

Bianco P, Robey PG. Stem cells in tissue engineering. Nature. 2001;414(6859):118-21.

Lee TJ, Kang SW, Bhang SH, Kang JM, Kim BS. Apatite-coated porous poly(lactic-co-glycolic acid) microspheres as an injectable bone substitute. J Biomater Sci Polym Ed. 2010;21(5):635-45.

Akintoye SO, Lam T, Shi S, Brahim J, Collins MT, Robey PG. Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone. 2006;38(6):758-68.

Aghaloo TL, Chaichanasakul T, Bezouglaia O, Kang B, Franco R, Dry SM, Atti E, Tetradis S. Osteogenic potential of mandibular vs. long-bone marrow stromal cells. J Dent Res. 2010;89(11):1293-8.

Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279-95.

Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294-301.

Dudas JR, Marra KG, Cooper GM, Penascino VM, Mooney MP, Jiang S, Rubin JP, Losee JE. The osteogenic potential of adipose-derived stem cells for the repair of rabbit calvarial defects. Ann Plast Surg. 2006;56(5):543-8.

Pendleton C, Li Q, Chesler DA, Yuan K, Guerrero-Cazares H, Quinones-Hinojosa A. Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas. PLoS One. 2013;8(3):e58198.

Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol. 2004;22(5):560-7.

Halvorsen Y, Wilkison W, Gimble J. Adipose-derived stromal cells -their utility and potential in bone formation. Int J Obes. 2000;24(4):S41-S4.

Rhee SC, Ji YH, Gharibjanian NA, Dhong ES, Park SH, Yoon ES. In vivo evaluation of mixtures of uncultured freshly isolated adipose-derived stem cells and demineralized bone matrix for bone regeneration in a rat critically sized calvarial defect model. Stem Cells Dev. 2011;20(2):233-42.

Mesimaki K, Lindroos B, Tornwall J, Mauno J, Lindqvist C, Kontio R, Miettinen S, Suuronen R. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg. 2009;38(3):201-9.

Wolff J, Sandor GK, Miettinen A, Tuovinen VJ, Mannerstrom B, Patrikoski M, Miettinen S. GMP-level adipose stem cells combined with computer-aided manufacturing to reconstruct mandibular ameloblastoma resection defects: Experience with three cases. Ann Maxillofac Surg. 2013;3(2):114-25.

Sandor GK, Tuovinen VJ, Wolff J, Patrikoski M, Jokinen J, Nieminen E, Mannerstrom B, Lappalainen OP, Seppanen R, Miettinen S. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. J Oral Maxillofac Surg. 2013;71(5):938-50.

Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529-43.

Ma PX, Elisseeff J. Scaffolding in tissue engineering. Taylor and Francis Group: CRC press; 2005. p. 241.

Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295(5557):1014-7.

Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21(23):2347-59.

Nilsson M, Wielanek L, Wang JS, Tanner KE, Lidgren L. Factors influencing the compressive strength of an injectable calcium sulfate-hydroxyapatite cement. J Mater Sci Mater Med. 2003;14(5):399-404.

Copcu E, Sivrioglu N, Aksoy B, Oztan S. Long term results of the reconstruction of maxillofacial segmental bone defects with bioactive glass: Presentation of six cases. Int J Plast Surg. 2006;3(2):3-7.

Lee SC, Wu CT, Lee ST, Chen PJ. Cranioplasty using polymethyl methacrylate prostheses. J Clin Neurosci. 2009;16(1):56-63.

Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8(2):272-88.

Aldinger G, Herr G, Küsswetter W, Reis HJ, Thielemann FW, Holz U. Bone morphogenetic Protein: a review. Int Orthop. 1991;15(2):169-77.

Lee BK. Growth factors in oral and maxillofacial surgery: potentials and challenges. J Korean Assoc Oral Maxillofac Surg. 2013;39(6):255-6.

Ayoub A, Roshan CP, Gillgrass T, Naudi K, Ray A. The clinical application of rhBMP-7 for the reconstruction of alveolar cleft. J Plast Reconstr Aesthet Surg. 2015.

Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL. Cell differentiation by mechanical stress. FASEB J. 2002;16(2):270-2.

Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T. Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. J Cell Biochem. 2007;101(5):1266-77.

Schortinghuis J, Stegenga B, Raghoebar G, de Bont L. Ultrasound stimulation of maxillofacial bone healing. Crit Rev Oral Biol Med. 2003;14(1):63-74.

Ryaby JT. Clinical effects of electromagnetic and electric fields on fracture healing. Clin Orthop Relat Res. 1998(355 Suppl):S205-15.

Griffin M, Bayat A. Electrical stimulation in bone healing: critical analysis by evaluating levels of evidence. Eplasty. 2011;11.

Balint R, Cassidy NJ, Araida Hidalgo-Bastida L, Cartmell S. Electrical stimulation enhanced mesenchymal stem cell gene expression for orthopaedic tissue repair. J Biomater Tissue Eng. 2013;3(2):212-21.

Hammerick KE, James AW, Huang Z, Prinz FB, Longaker MT. Pulsed direct current electric fields enhance osteogenesis in adipose-derived stromal cells. Tissue Eng Part A. 2010;16(3):917-31.

Hagiwara T, Bell WH. Effect of electrical stimulation on mandibular distraction osteogenesis. J Craniomaxillofac Surg. 2000;28(1):12-9.

Kamegai A, Mori M, Inoue S. Mandibular reconstruction using electrically stimulated periosteum. J Craniomaxillofac Surg. 1990;18(1):8-13.

Rauh J, Milan F, Gunther KP, Stiehler M. Bioreactor systems for bone tissue engineering. Tissue Eng Part B Rev. 2011;17(4):263-80.

Depprich R, Handschel J, Wiesmann HP, Jasche-Meyer J, Meyer U. Use of bioreactors in maxillofacial tissue engineering. Br J Oral Maxillofac Surg. 2008;46(5):349-54.

Yeatts AB, Fisher JP. Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone. 2011;48(2):171-81.

Martin I, Wendt D, Heberer M. The role of bioreactors in tissue engineering. Trends Biotechnol. 2004;22(2):80-6.

Balint R, Cassidy NJ, Cartmell SH. Electrical stimulation: a novel tool for tissue engineering. Tissue Eng Part B Rev. 2013;19(1):48-57.




DOI: https://doi.org/10.22037/rrr.v1i1.10518

Refbacks

  • There are currently no refbacks.


ISSN:2476-5163 (Print); 2476-5171 (Online)

 
Creative Commons LicenseThe Journal of "Regeneration, Reconstruction, & Restoration" is licensed under a Creative Commons Attribution 4.0 International License.