Phage Therapy as a New Approach in Treating Emerging Antibiotic Resistant Infections

Ramak Ajideh, Mohammad Ali Faramarzi, Mohammad Hossein Yazdi, Mohammad Reza Pourmand



Despite the progress in treatment of infectious diseases, ability of microorganisms to develop the resistance to routine antibiotics has still remained as a big global challenge in clinics. This subject matter keeps the infections top in the list of life threatening diseases especially in those individuals suffering from nosocomial infections. The importance of this global health challenge urges researchers to find an alternative solution with more efficacies to treat infections. There are some alternative approaches by which the global spread of resistant bacteria could be controlled. Through these ways, using bacteriophages instead of different generation of antibiotics brings many promises. According to results of different studies using bacteriophages in the management of infectious disease especially in nosocomial infections not only helps to reduce the spread of antibiotics resistance but also raises the hopes for the rescue of the suffering patients. Bacteriophages can open a new therapeutic window in the control and the treatment of the infectious disease with better efficacy.

•Bacteriophage can be used as an antimicrobial agent for treatment of bacterial infection.
•Bacterial resistance to routine antibiotics is a big challenge in the world.
•Specificity toward bacteria is one of the important characteristic of phages.


Bacterial resistance; Nosocomial Infections; Bacteriophage Therapy; Alternative approach; Natural phage; Synthetic phages

Full Text:



Abedon, S. T., Kuhl, S. J., Blasdel, B. G. and E. M. Kutter, (2011). ʺPhage treatment of human infections.ʺ Bacteriophage, 1(2): 66–85.

Ackermann, H. W. and D. Prangishvili, (2012). ʺProkaryote viruses studied by electron microscopy.ʺ Archives of Virology, 157(10): 1843–1849.

Alemayehu, D., Casey, P. G., Mcauliffe, O., Guinane, C. M., Martin, J. G., Shanahan, F. Coffey, A., Ross, R. P. and C. Hill, (2012). ʺBacteriophage phiMR299-2 and phiNH-4 can eliminate Psuedomonas aeruginosa in the murine lung and on cystic fibrosis lung airway.ʺ American Society for Microbiology, 3(2): e00029-12.

Alves, D. R., Gaudion, A., Bean, J. E., Perez Esteban, P., Arnot, T. C., Harper, D. R., Kot, W., Hansen, L.H., M.C. Enright, M. C. and A. T. A. Jenkins, (2014). ʺCombined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation.ʺ Applied Environmental Microbiology, 80(21): 6694–6703.

Ando, H., Lemire, S., Pires, D. P. and T. K. Lu, (2015). ʺEngineering modular viral scaffolds for targeted bacterial population editing.ʺ Cell System, 1(3): 187–196.

Bar, H., Yacoby, I. and I. Benhar, (2008). ʺKilling cancer cells by targeted drug-carrying phage nanomedicines.ʺ BioMed Central Biotechnology, 8: 37.

Bardina, C., Spricigo, D. A., Cortés, P. and M. Llagostera, (2012). ʺSignificance of the bacteriophage treatment schedule in reducing salmonella colonization of poultry.ʺ Applied Environmental Microbiology, 78(18): 6600–6007.

Bikard, D., Euler, C. W., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duportet, X., Fischetti, V. A. and L. A. Marraffini, (2014). ʺExploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials.ʺ Nature Biotechnology, 32: 1146–1150.

Bodier-Montagutelli, E., Morello, E., l’Hostis, G., Guillon, A., Dalloneau, E., Respaud, R., Pallaoro, N., Blois, H., Vecellio, L., Gabard, J. and N. Heuzé-Vourc’h, (2017). ʺInhaled phage therapy: a promising and challenging approach to treat bacterial respiratory infections.ʺ Expert Opinion on Drug Delivery, 14(8), pp.959-972.

Bruttin, A. and H. Brüssow, (2005). ʺHuman volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy.ʺ Antimicrobial Agents Chemotherapy, 49(7): 2874–2878.

Chapot-Chartier, M. P, (2014). ʺInteractions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages.ʺ Frontiers in Microbiology, 5: 236.

Chevallereau, A., Blasdel, B. G., De Smet, J., Monot, M., Zimmermann, M., Kogadeeva, Sauer, U., Jorth, P., Whiteley, M., Debarbieux, L and R. Lavigne, (2016). ʺNext-generation ‘-omics’ approaches reveal a massive alteration of host RNA metabolism during bacteriophage infection of Pseudomonas aeruginosa.ʺ PLoS Genet, 12(7): e1006134.

Chhibber, S., Kaur, S. and S. Kumari, (2008). ʺTherapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055-mediated lobar pneumonia in mice.ʺ Journal of Medical Microbiology, 57(12): 1508–1513.

Chhibber, C., Kaur, T. and S. Kaurm, (2013). ʺCo-therapy using lytic bacteriophage and linezolid: effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections.ʺ PLoS One, 8(2): e56022.

Chhibber, S., Nag, D. and S. Bansal, (2013). ʺInhibiting biofilm formation by Klebsiella pneumoniae B5055 using an iron antagonizing molecule and a bacteriophage.ʺ BioMed Central Microbiology, 13: 174.

Citorik, R. J., Mimee, M. and T. K. Lu, (2014). ʺSequence-specific antimicrobials using efficiently delivered RNA-guided nucleases.ʺ Nature Biotechnology, 32(11): 1141–1145

Cui, L. and D. Bikard, (2016). ʺConsequences of Cas9 cleavage in the chromosome of Escherichia coli.ʺ Nucleic Acids Research, 44(9): 4243–4251.

Cumby, N., Davidson, A. R. and K. L. Maxwell, (2012). ʺThe moron comes of age.ʺ Bacteriophage, 2(4): 225–228.

Debarbieux, L., Leduc, D., Maura, D., Morello, E., Criscuolo, A., Grossi, O. Balloy, V. and L. Touqui, (2010). ʺBacteriophages can treat and prevent Pseudomonas aeruginosa lung infections.ʺ The Journal of Infectious Diseases, 201(7): 1096–104.

Edgar, R., Friedman, N., Molshanski Mor, S. and U. Qimron, (2012). ʺReversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes.ʺ Applied Environmental Microbiology, 78(3): 744–751.

Fish, R., Kutter, E., Wheat, G., Blasdel, B., Kutateladze, M. and S. Kuhl, (2016). ʺBacteriophage treatment of intransigent diabetic toe ulcers: a case series.ʺ Journal of Wound Care, 25(7): S27–33.

Francino, M. P. (2016). ʺAntibiotics and the human gut microbiome: dysbioses and accumulation of resistances.ʺ Frontiers in Microbiology, 12(6): 1543.

Ghasemi, A., Salari, M. H., Zarnani, A. H., Pourmand, M. R., Ahmadi, H., Mirshafiey, A. and M. Jeddi-Tehrani, (2013). ʺImmune reactivity of Brucella melitensis-vaccinated rabbit serum with recombinant Omp31 and DnaK proteins." Iranian Journal of Microbiology, 5(1):19–23.

Gill, J. J. and P. Hyman, (2010). ʺPhage choice, isolation and preparation for phage therapy.ʺ Current Pharmaceutical Biotechnology, 11(1): 2–14.

Górski, A., Międzybrodzki, R., Borysowski, J., Dąbrowska, K., Wierzbicki, P., Ohams, M., Korczak-Kowalska, G., Olszowska-Zaremba, N., Łusiak-Szelachowska, M., Kłak, M., Jończyk, E., Kaniuga, E., Gołaś, A., Purchla, S., Weber-Dąbrowska, B., Letkiewicz, S., Fortuna, W., Szufnarowski, K., Pawełczyk, Z., Rogóż, P. and D. Kłosowska, (2012). ʺPhage as a modulator of immune responses: practical implications for phage therapy.ʺ Advances in Virus Research, 83: 41–71.

Gutiérrez, D., Vandenheuvel, D., Martínez, B., Rodríguez, A., Lavigne, R. and P. García, (2015). ʺTwo phages, phiIPLA-RODI and phiIPLA-C1C, lyse mono- and dual-species Staphylococcal biofilms.ʺ Applied Environmental Microbiology, 81(10): 3336–3348.

Hatfull, G. F. and R. W. Hendrix, (2011). ʺBacteriophages and their genomes.ʺ Current Opinion Virology, 1(4): 298–303.

Havaei, S. A., Ohadian Moghadam, S., Pourmand, M. R. and J. Faghri, (2010). ʺPrevalence of genes encoding bi-component leukocidins among clinical isolates of methicillin–resistant Staphylococcus aureus.ʺ Iranian Journal of Public Health, 39(1): 8–14.

Hraiech, S., Brégeon, F and J. M. Rolain, (2015). ʺBacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: rationale and current status.ʺ Drug Design, Development and Therapy, 9: 3653–3663.

Jensen, K. C., Hair, B. B., Wienclaw, T. M., Murdock, M. H., Hatch, J. B., Trent, A. T., White, T. D., Haskell, K. J and B. K. Berges, (2015). ʺIsolation and host range of bacteriophage with lytic activity against methicillin-resistant Staphylococcus aureus and potential use as a fomite decontaminant.ʺ PLoS One, 10(7): e0131714.

Kali, A., Stephen, S., Sivaraman, U., Kumar, S., Joseph, N. M., Srirangaraj, S. and J. M. Easow, (2013). ʺBacteriophage types of methicillin-resistant Staphylococcus aureus in a tertiary care hospital.ʺ Australasian Medical Journal, 6(10): 496–503.

Kingwell, K, (2015). ʺBacteriophage therapies re-enter clinical trials.ʺ Nature Reviews Drug Discovery, 14: 515–516.

Krom, R. J., Bhargava, P., Lobritz, M. A. and J. J. Collins, (2015). ʺEngineered phagemids for nonlytic, targeted antibacterial therapies.ʺ Nano Letters, 15(7): 4808–4813

Kutter1, E., De Vos, D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S. and S. T. Abedon, (2010). ʺPhage therapy in clinical practice: treatment of human infections.ʺ Current Pharmaceutical Biotechnology, 11(1): 69–86.

Labrie, S. J., Samson, J. E. and S. Moineau, (2010). ʺBacteriophage resistance mechanisms.ʺ Nature Reviews Microbiology, 8(5): 317–327.

Liapikou, A. and A. Torres, (2013). ʺEmerging drugs on methicillin-resistant Staphylococcus aureus.ʺ Expert Opinion on Emerging Drugs, 18(3): 291–305.

Lin, T. Y., Lo, Y. H., Tseng, P. W., Chang, S. F., Lin, Y. T. and T. S. Chen, (2012). ʺA T3 and T7 recombinant phage acquires efficient adsorption and a broader host range.ʺ PLoS One, 7(2): e30954.

Lu, T.K. and J. J. Collins, (2007). ʺDispersing biofilms with engineered enzymatic bacteriophage.ʺ Proceedings of the National Academy of Sciences, 104: 11197–11202.

Malik, D. J., Sokolov, I. J., Vinner, G. K., Mancusoa, F., Cinquerruia, S., Vladisavljevica, G. T., Clokie, M. R., Gartonb, N. J., Stapleya, A. G. F. and A. Kirpichnikovac, (2017) ʺFormulation, stabilisation and encapsulation of bacteriophage for phage therapy.ʺ Advances in Colloid and Interface Science, 249: 100–133.

Matsuda, T., Freeman, T. A., Hilbert, D. W., Duff, M., Fuortes, M., Stapleton, P.P. and J. M. Daly, (2005). ʺLysis-deficient bacteriophage therapy decreases endotoxin and inflammatory mediator release and improves survival in a murine peritonitis model.ʺ Surgery, 137(6): 639–646.

McCarville, J. L., Caminero, A. and E. F. Verdu, (2016). ʺNovel perspectives on therapeutic modulation of the gut microbiota.ʺ Gastroenterology Journal, 9(4): 580–593.

McVay, C. S., Velásquez, M. and J. A Fralick, (2007). ʺPhage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model.ʺ Antimicrobial Agents Chemotherapy, 51(6): 1934–1938.

McVay, C. S., Velásquez, M. and J. A. Fralick, (2007) ʺPhage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model.ʺ Antimicrobial Agents and Chemotherapy, 51(6): 1934–1938.

McVay, C. S., Velásquez, M. and J. A. Fralick, (2007). ʺPhage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model.ʺ American Society for Microbiology, 51(6): 1934–1938.

Nemeth, J., Oesch, G. and S. P. Kuster, (2015). ʺBacteriostatic versus bactericidal antibiotics for patients with serious bacterial infections: systematic review and meta-analysis.ʺ Journal of Antimicrobial Chemotherapy, 70(2): 382–395.

Pantůcek, R., Rosypalová, A., Doškar, J., Kailerová, J., Růžicǩová, V., Borecká, P. Snopkova, S., Horvath, R., Gotz, F and S, Rosypal, (1998). ʺThe polyvalent staphylococcal phage phi 812: its host-range mutants and related phages.ʺ Virology, 246(2): 241–52.

Pei, R. and G. R. Lamas-Samanamud, (2014). ʺInhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes.ʺ Applied Environmental Microbiology, 80(17), 5340–5348.

Pérez Pulido, R., Grande Burgos, M. J., Gálvez, A. and R. López, (2016). ʺApplication of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria.ʺ Critical Reviews in Biotechnology, 36(5): 851–861.

Pires, D. P., Cleto, S., Sillankorva, S., Azeredo, J. and T. K. Lu, (2016). ʺGenetically engineered phages: a review of advances over the last decade.Microbiol.ʺ Microbiology and Molecular Biology Reviews, 80(3): 523–543.

Pourmand, A., Pourmand, M. R., Wang, J. and R. Shesser, (2012). ʺApplication of nanomedicine in emergency medicine; Point-of-care testing and drug delivery in twenty - first century.ʺ Journal of Pharmaceutical Sciences, 20(26).

Qadir, M. I, (2015). ʺReview: phage therapy: a modern tool to control bacterial infections.ʺ Pakistan Journal of Pharmaceutical Sciences, 28(1): 265–270.

Rangel, R., Guzman Rojas, L., le Roux, L. G., Staquicini, F. I., Hosoya, H., Barbu, E.M., Ozawa, M. G., Nie, J., Dunner, K. J., Langley, R. R., Sage, E. H., Koivunen, E., Gelovani, J. G., Lobb, R. R., Sidman, R. L., Pasqualini, R and W. Arap, (2012). ʺCombinatorial targeting and discovery of ligand-receptors in organelles of mammalian cells.ʺ Nature Communication, 17(3): 788.

Rhoads, D. D.; Wolcott, R. D.; Kuskowski, M. A.; Wolcott, B. M.; Ward, L. S. and A. Sulakvelidze, (2009). ʺBacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial.ʺ Journal of Wound Care, 18(6): 237–243.

Roach, D. R. and D. M. Donovan, (2015). ʺAntimicrobial bacteriophage-derived proteins and therapeutic applications.ʺ Bacteriophage, 5(3): e1062590.

Rose, T., Verbeken, G., De Vos, D., Merabishvili, M., Vaneechoutte, M., Lavigne, R., Jennes, S., Zizi, M. and J. P. Pirnay, (2014). ʺExperimental phage therapy of burn wound infection: difficult first steps.ʺ International Journal of Burns and Trauma, 4(2): 66–73.

Ross, A., Ward, S. and P. Hyman, (2016). ʺMore is better: selecting for broad host range bacteriophages.ʺ Frontiers in Microbiology, 8(7): 1352.

Sarker, S. A. and H. Brüssow, (2016). ʺFrom bench to bed and back again: phage therapy of childhood Escherichia coli diarrhea.ʺ Annals of the New York Academy of Sciences, 1372: 42–52.

Sarker, S. A., Sultana, S., Reuteler, G., Moine, D., Descombes, P., Charton, F., Bourdin, G., McCallin, S., Ngom-Bru, C., Neville, T., Akter, M., Huq, H., Qadri, F., Talukdar, K., Kassam, M., Delley, M., Loiseau, C., Deng, Y., El Aidy, S., Berger, B. and H. Brüssow, (2016). ʺOral Phage Therapy of Acute Bacterial Diarrhea with Two Coliphage Preparations: A Randomized Trial in Children from Bangladesh.ʺ EBioMedicine, 4: 124–37.

Semler, D. D., Goudie, A. D., Finlay, W. H. and J. J. Dennisa, (2014). ʺAerosol Phage Therapy Efficacy in Burkholderia cepacia Complex Respiratory Infections.ʺ American Society for Microbiology, 58(7): 4005–4013.

Singla, S., Harjai, K., Katare, O. P. and S. Chhibber, (2015). ʺBacteriophage-loaded nanostructured lipid carrier: improved pharmacokinetics mediates effective resolution of Klebsiella pneumoniae-induced lobar pneumonia.ʺ The Journal of Infectious Diseases, 212(2): 325–334.

Smith, H. W. and M. B. Huggins, (1982). ʺSuccessful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics.ʺ Journal of General Microbiology, 128(2): 307–318.

Stanford, K., Niu, Y. D. and R. Johnson, (2010). ʺOral delivery systems for encapsulated bacteriophages targeted at Escherichia coli O157:H7 in feed lot cattle.ʺ Journal of Food Protection, 73(7): 1304–1312.

Staquicini, F. I., Ozawa, M.G., Moya, C. A., Driessen, W. H. P., Barbu, E. M., Nishimori, H., Soghomonyan, S., Flores, L. G., Liang, X., Paolillo, V., Alauddin, M. M., Basilion, J. P., Furnari, F. B., Bogler, O., Lang, F. F., Aldape, K. D., Fuller G. N., Höök, M., Gelovani, J. G., Sidman, R. L., Cavenee, W. K., Pasqualini, R and W. Arap, (2011). ʺSystemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma.ʺ The Journal of Clinical Investigation, 121(1): 161–73.

Sulakvelidze, A., Alavidze, Z. and J. R. Morris, (2001). ʺBacteriophage therapy.ʺ Antimicrobial Agents Chemotherapy, 45(3): 649–659.

Tanji, Y., Shimada, T., Fukudomi, H., Miyanaga, K., Nakai, Y. and H. Unno, (2005). ʺTherapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice.ʺ Journal of Bioscience and Bioengineering, 100(3): 280–287.

Trend, S., Fonceca, A. M., Ditcham, W. G. and A. Kicic, (2017). The potential of phage therapy in cystic fibrosis: Essential human-bacterial-phage interactions and delivery considerations for use in Pseudomonas aeruginosa-infected airways. Journal of Cystic Fibrosis, 6(6):663-670.

Wainwright, M. and H. T. Swan, (1986). ʺPaine and the earliest surviving clinical records of penicillin therapy.ʺ Medical. History, 30(1), 42–56.

Will, Q. F., Kerrigan, C. and J. S. Soothill, (2005). ʺExperimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model.ʺ Antimicrobial Agents Chemotherapy, 49(3): 1220–1221.

Wittebole, X., De-Roock, S. and S. M Opal, SM, (2014). ʺA historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens.ʺ Virulence, 5(1): 226–235.

Wright, A., Hawkins, C. H., Änggård, E. E. and D. R. Harper, (2009). ʺA controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa, a preliminary report of efficacy.ʺ Clinical Otolaryngology, 34(4): 349–357.

Yen, M., Cairns, L. S. and A. Camilli, (2017). ʺA cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models.ʺ Nature Communications, 8: 14187.

Yuan, T. Z., Overstreet, C. M., Moody, I. S. and G. A. Weiss, (2013). ʺProtein engineering with biosynthesized libraries from Bordetella bronchiseptica bacteriophage.ʺ PLoS One, 8(2):e55617.


  • There are currently no refbacks.