Ionic Liquids and their Toxicity on the Enzyme Activity and Stability

Mehdi Mogharabi-Manzari, Tabassom Sedaghat-Anbouhi, Mahbobeh Vahidi, Mohammad Ali Faramarzi



Molecular interactions are crucial between the enzyme molecules and the surrounding solution in an enzymatic catalysis. Although aqueous solutions used as conventional enzymatic reaction media, non-aqueous enzymology emerges as a major area of biotechnology research and development. Ionic liquids, as new generation of promising alternatives to traditional organic solvents, possess potential industrial enzymatic applications. Enzymes in ionic liquids present enhanced activity, stability, and selectivity. In addition, the potential of ionic liquids in bio-catalysis is raised by high ability of dissolving a wide variety of substrates and their extensively tunable solvent properties through appropriate modification of the cations and anions. However, despite the bio-friendly nature of ionic liquids for enzymatic reactions, their growing interests increase concerns associated with toxicity and environmental pollution of such compounds. This mini-review presents a brief highlight of the contemporary knowledge of enzymes activity and stability in ionic liquids and the environmental influences regarding the potential risks related to the growing applications of these green solvents.

•Conventional organic solvents can be replaced by ionic liquids as green solvents.
•Ionic liquids are used as additives, catalysts, or reaction media in industries.
•Advantages and disadvantages of ionic liquids are discussed.
•Potential environmental hazards linked to application of ionic liquids are highlighted.
•The environmental fate needs to be considered in designing safer ionic liquids.


Enzyme; Ionic liquid; Green solvent; Environmental fate; Toxicity

Full Text:



Aki, S. N., Brennecke, J. F. and A. Samanta, (2001). ″How polar are room-temperature ionic liquids?″ Chemical Communications, 5: 413–414.

Arning, J., Stolte, S., Böschen, A., Stock, F., Pitner, W. R., Welz-Biermann, U., Jastorff, B. and J. Ranke, (2008). ″Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalized side chains and anions of ionic liquids on acetylcholinesterase.″ Green Chemistry, 10(1): 47–58.

Bernot, R. J., Kennedy, E. E. and G. A. Lamberti, (2005). ″Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, Physa acuta.″ Environmental Toxicology and Chemistry, 24(7): 1759–1765.

Boon, J. A., Levisky, J. A., Pflug, J. L. and J. S. Wilkes, (1986). ″Friedel-Crafts reactions in ambient-temperature molten salts.″ Journal of Organic Chemistry, 51(4): 480–483.

Bubalo, M. C., Radošević, K., Redovniković, I. R., Halambek, J. and V. G. Srček, (2014). ″A brief overview of the potential environmental hazards of ionic liquids.″ Ecotoxicology and Environmental Safety, 99: 1–12.

Carmichael, A. J. and K. R. Seddon, (2000). ″Polarity study of some 1‐alkyl‐3‐methylimidazolium ambient‐temperature ionic liquids with the solvatochromic dye, Nile Red.″ Journal of Physical Organic Chemistry, 13(10): 591–595.

Carrea, G. and S. Riva, (2000). ″Properties and synthetic applications of enzymes in organic solvents.″ Angewandte Chemie International Edition, 39(13): 2226–2254.

Chen, X., Li, X., Hu, A. and F. Wang, (2008). ″Advances in chiral ionic liquids derived from natural amino acids.″ Tetrahedron: Asymmetry, 19(1): 1–14.

Cho, C. W., Pham, T. P. T., Jeon, Y. C. and Y. S. Yun, (2008). ″Influence of anions on the toxic effects of ionic liquids to a phytoplankton Selenastrum capricornutum.″ Green Chemistry, 10(1): 67–72.

Choi, J. M., Han, S. S. and H. S. Kim, (2015). ″Industrial applications of enzyme bio-catalysis: current status and future aspects.″ Biotechnology Advances, 33(7): 1443–1454.

Contesini, F. J., de Alencar Figueira, J., Kawaguti, H. Y., de Barros Fernandes, P. C., de Oliveira Carvalho, P., da Graça Nascimento, M. and H. H. Sato, (2013). ″Potential applications of carbohydrases immobilization in the food industry.″ International Journal of Molecular Sciences, 14(1): 1335–1369.

Costa, S. P., Justina, V. D., Bica, K., Vasiloiu, M., Pinto, P. C. and M. L. M. Saraiva, (2014). ″Automated evaluation of pharmaceutically active ionic liquids’ (eco) toxicity through the inhibition of human carboxylesterase and Vibrio fischeri.″ Journal of Hazardous Materials, 265: 133–141.

Costello, D. M., Brown, L. M. and G. A. Lamberti, (2009). ″Acute toxic effects of ionic liquids on zebra mussel (Dreissena polymorpha) survival and feeding.″ Green Chemistry, 11(4): 548–553.

Deng, Y., Beadham, I., Wu, J., Chen, X. D., Hu, L. and J. Gu, (2015). ″hronic effects of the ionic liquid [C4mim][Cl] towards the microalga Scenedesmus quadricauda.″ Environmental Pollutants, 204: 248–255.

Docherty, K. M. and C. F. Kulpa, (2005). ″Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids.″ Green Chemistry, 7(4): 185–189.

Du, Z., Zhu, L., Dong, M., Wang, J., Wang, J., Xie, H. and S. Zhu, (2012). ″Effects of the ionic liquid [Omim] PF 6 on antioxidant enzyme systems, ROS and DNA damage in zebrafish (Danio rerio).″ Aquatic Toxicology, 124: 91–93.

Dzyuba, S. V. and R. A. Bartsch, (2002). ″Expanding the polarity range of ionic liquids.″ Tetrahedron Letters, 43(26): 4657–4659.

Egorova, K. S., Seitkalieva, M. M., Posvyatenko, A. V. and V. Ananikov, (2015). ″Unexpected increase of toxicity of amino acid-containing ionic liquids.″ Toxicological Research, 4(1): 152–159.

El-Shamy, A. M., Zakaria, K. H., Abbas, M. A. and S. Z. El-Abedin, (2015). ″Anti-bacterial and anti-corrosion effects of the ionic liquid 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate.″ Journal of Molecular Liquids, 211: 363–369.

Fry, S. E. and N. J. Pienta, (1985). ″Effects of molten salts on reactions. Nucleophilic aromatic substitution by halide ions in molten dodecyltributylphosphonium salts.″ Journal of the American Chemical Society, 107(22): 6399–6400.

Fukumoto, K. and H. Ohno, (2006). ″Design and synthesis of hydrophobic and chiral anions from amino acids as precursor for functional ionic liquids.″ Chemical Communications, 29: 3081–3083.

Fukumoto, K., Yoshizawa, M. and H. Ohno, (2005). ″Room temperature ionic liquids from 20 natural amino acids.″ Journal of the American Chemical Society, 127(8): 2398–2399.

Ge, H. -L., Liu, S. -S., Su, B. -X. and L. -T. Qin, (2014). ″Predicting synergistic toxicity of heavy metals and ionic liquids on photobacterium Q67.″ Journal of Hazardous Materials, 268: 77–83.

Ge, H. -L., Liu, S. -S., Zhu X. W., Liu, H. L. and L. J. Wang, (2010). ″Predicting hormetic effects of ionic liquid mixtures on luciferase activity using the concentration addition model.″ Environmental Science and Technology, 45(4): 1623–1629.

García-Lorenzo, A., Tojo, E., Tojo, J., Teijeira, M., Rodríguez-Berrocal, F. J., González, M. P. and V. S. Martínez-Zorzano, (2008). ″Cytotoxicity of selected imidazolium-derived ionic liquids in the human Caco-2 cell line. Sub-structural toxicological interpretation through a QSAR study.″ Green Chemistry, 10(5): 508–516.

Itoh T. and U. Hanefeld, (2017). ″Enzyme catalysis in organic synthesis.″ Green Chemistry, 19(2): 331–332.

Jafari, N., Rezaei, S., Rezaie, R., Dilmaghani, H., Khoshayand, M. R. and M. A. Faramarzi, (2017). ″Improved production and characterization of a highly stable laccase from the halophilic bacterium Chromohalobacter salexigens for the efficient delignification of almond shell bio-waste.″ International Journal of Biological Macromolecules, 105: 489–498.

Jesionowski, T., Zdarta, J. and B. Krajewska, (2014). ″Enzyme immobilization by adsorption: a review.″ Adsorption, 20(5-6): 801–821.

Kaar, J. L. (2017). ″Lipase activation and stabilization in room-temperature ionic liquids.″ Enzyme Stabilization and Immobilization, 10: 25–35.

Kaftzik, N., Wasserscheid, P. and U. Kragl, (2002). ″Use of ionic liquids to increase the yield and enzyme stability in the β-galactosidase catalysed synthesis of N-acetyllactosamine.″ Organic Process Research and Development, 6(4): 553–557.

Klibanov, A. M. (1997). ″Why are enzymes less active in organic solvents than in water?″ Trends in Biotechnology, 15(3), 97–101.

Klibanov, A. M. (2001). ″Improving enzymes by using them in organic solvents.″ Nature, 409(6817), 241–246.

Kirchhecker, S. and D. Esposito, (2016). ″Amino acid based ionic liquids: a green and sustainable perspective.″ Current Opinion in Green and Sustainable Chemistry, 2: 28–33.

Kirk, O., Borchert, T. V. and C. C. Fuglsang, (2002). ″Industrial enzyme applications.″ Current Opinion in Biotechnology, 13(4): 345–351.

Kragl, U., Eckstein, M. and N. Kaftzik, (2002). ″Enzyme catalysis in ionic liquids.″ Current Opinion in Biotechnology, 13(6): 565–571.

Laane, C., Boeren, S., Vos, K. and C. Veeger, (1987). ″Rules for optimization of biocatalysis in organic solvents.″ Biotechnology and Bioengineering, 30(1): 81–87.

Latała, A., Nędzi, M. and P. Stepnowski, (2009). ″Toxicity of imidazolium and pyridinium based ionic liquids towards algae. Bacillaria paxillifer (a microphytobenthic diatom) and Geitlerinema amphibium (a microphytobenthic blue green alga).″ Green Chemistry, 11(9): 1371–1376.

Latała, A., Nędzi, M. and P. Stepnowski, (2009). ″Toxicity of imidazolium and pyridinium based ionic liquids towards algae. Chlorella vulgaris, Oocystis submarina (green algae) and Cyclotella meneghiniana, Skeletonema marinoi (diatoms).″ Green Chemistry, 11(4): 580–588.

Leo, A., Jow, P. Y. C., Silipo, C. and C. Hansch, (1975) ″Calculation of hydrophobic constant (log P) from. pi. and f constants.″ Journal of Medicinal Chemistry, 18(9): 865–868.

Li, X., Ma, J. and J. Wang, (2015). ″Cytotoxicity, oxidative stress, and apoptosis in HepG2 cells induced by ionic liquid 1-methyl-3-octylimidazolium bromide.″ Ecotoxicology and Environmental Safety, 120: 342–348.

Liszka, M. J., Kang, A., Konda, N. M., Tran, K., Gladden, J. M., Singh, S. and K. L. Sale, (2016). ″Switchable ionic liquids based on di-carboxylic acids for one-pot conversion of biomass to an advanced biofuel.″ Green Chemistry, 18(14): 4012–4021.

Lozano, P., De Diego, T., Carrie, D., Vaultier, M. and J. L. Iborra, (2001). ″Over-stabilization of Candida antarctica lipase B by ionic liquids in ester synthesis.″ Biotechnology Letters, 23(18): 1529–1533.

Łuczak, J., Jungnickel, C., Łącka, I., Stolte, S. and J. Hupka, (2010). ″Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives.″ Green Chemistry, 12(4): 593–601.

Matzke, M., Stolte, S., Thiele, K., Juffernholz, T., Arning, J., Ranke, J., Welz-Biermann, B. and B. Jastorff, (2007). ″The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco) toxicological test battery.″ Green Chemistry, 9(11): 1198–1207.

Mogharabi, M. and M. A. Faramarzi, (2014). ″Laccase and laccase-mediated systems in the synthesis of organic compounds.″ Advanced Synthesis and Catalysis, 356(5): 897–927.

Moniruzzaman, M., Nakashima, K., Kamiya, N. and M. Goto, (2010). ″Recent advances of enzymatic reactions in ionic liquids.″ Biochemical Engineering Journal, 48(3): 295–314.

Naushad, M., ALOthman, Z. A., Khan, A. B. and M. Ali, (2012). ″Effect of ionic liquid on activity, stability, and structure of enzymes: a review.″ International Journal of Biological Macromolecules, 51(4): 555–560.

Park, S. and R. J. Kazlauskas, (2003). ″Bio-catalysis in ionic liquids–advantages beyond green technology.″ Current Opinion in Biotechnology, 14(4): 432–437.

Persson, M. and U. T. Bornscheuer, (2003). ″Increased stability of an esterase from Bacillus stearothermophilus in ionic liquids as compared to organic solvents.″ Journal of Molecular Catalysis B: Enzymatic, 22(1): 21–27.

Pham, T. P. T., Cho, C. W. and Y. S. Yun, (2010). ″Environmental fate and toxicity of ionic liquids: a review.″ Water Research, 44(2): 352–372.

Plaquevent, J. C., Levillain, J., Guillen, F., Malhiac, C. and A. C. Gaumont, (2008). ″Ionic liquids: new targets and media for α-amino acid and peptide chemistry.″ Chemical Reviews, 108(12): 5035–5060.

Quijano, G., Couvert A., Amrane, A., Darracq, G., Couriol, C., Le Cloirec, P., Paquin, L. and D. Jastorff, (2011). ″Toxicity and biodegradability of ionic liquids: new perspectives towards whole-cell biotechnological applications.″ Chemical Engineering Journal, 174(1): 27–32.

Ranke, J., Müller, A., Bottin-Weber, U., Stock, F., Stolte, S., Arning, J., Störmann, R. and B. Jastorff, (2007). ″Lipophilicity parameters for ionic liquid cations and their correlation to in vitro cytotoxicity.″ Ecotoxicology and Environmental Safety, 67(3): 430–438.

Rantwijk, F. and R. A. Sheldon, (2007). ″Bio-catalysis in ionic liquids.″ Chemical Reviews, 107(6): 2757–2785.

Rezaie, R., Rezaei, S., Jafari, N., Forootanfar, H., Khoshayand, M. R. and M. A. Faramarzi, (2017a). ″Delignification and detoxification of peanut shell bio-waste using an extremely halophilic laccase from an Aquisalibacillus elongatus isolate.″ Extremophiles, 21(6): 993–1004.

Rezaei, S., Shahverdi, A. R. and M. A. Faramarzi, (2017b). ″Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp.″ Bioresource Technology, 230: 67–75.

Rogers, R., Daly, D. T., Swatloski, R. P., Hough, W. L., Davis, J. H., Smiglak, M., Pernak, J. and S. K. Spear, (2007) ″Multi-functional ionic liquid compositions.″ Patent Pub. No.: WO2007044693.

Sawant, R. and S. Nagendran, (2014). ″Protease: an enzyme with multiple industrial applications.″ World Journal of Pharmaceutical Sciences, 3: 568–579.

Sheldon, R. A. and S. van Pelt, (2013). ″Enzyme immobilisation in bio-catalysis: why, what and how.″ Chemical Society Reviews, 42(15): 6223–6235.

Sivapragasam, M., Moniruzzaman, M. and M. Goto, (2016). ″Recent advances in exploiting ionic liquids for biomolecules: solubility, stability and applications.″ Biotechnology Journal, 11(8): 1000–1013.

Stepankova, V., Bidmanova, S., Koudelakova, T., Prokop, Z., Chaloupkova, R. and J. Damborsky, (2013). ″Strategies for stabilization of enzymes in organic solvents.″ ACS Catalysis, 3(12): 2823–2836.

Stepnowski, P., Skladanowski, A. C., Ludwiczak, A. and E. Laczyńska, (2004). ″Evaluating the cytotoxicity of ionic liquids using human cell line HeLa, Hum.″ Experimental Toxicology, 23(11): 513–517.

Steudte, S., Stepnowski, P., Cho, C. W., Thöming, J. and S. Stolte, (2012). ″Ecotoxicity of fluoro-organic and cyano-based ionic liquid anions.″ Chemical Communication, 48(75): 9382–9384.

Sundarram, A. and T. P. K. Murthy, (2014). ″α-Amylase production and applications: a review.″ Journal of Applied and Environmental Microbiology, 2(4): 166–175.

Tsarpali, V., Belavgeni, A. and S. Dailianis, (2015). ″Investigation of toxic effects of imidazolium ionic liquids, [bmim][BF4] and [omim][BF4], on marine mussel Mytilus galloprovincialis with or without the presence of conventional solvents, such as acetone.″ Aquatic Toxicology, 164: 72–80.

Yu, M., Wang S. H., Luo, Y. R., Han, Y. W., Li, X. Y., Zhang, B. J. and J. J. Wang, (2009). ″Effects of the 1-alkyl-3-methylimidazolium bromide ionic liquids on the antioxidant defense system of Daphnia magna.″ Ecotoxicology and Environmental Safety, 72(6): 1798–1804.

Zhao, D., Liao, Y. and Z. Zhang, (2007). ″Toxicity of Ionic Liquids″ Clean: Soil, Air, Water, 35(1), 42–48.


  • There are currently no refbacks.