Specific Strategies for One-Step and Simultaneous Immobilization-Purification of Lipases

Somaye Imanparast, Javad Hamedi, Mohammad Ali Faramarzi



Lipases are the biocatalysts with outstanding prospects in industry and medicine. They have proven to be useful in various hydrolytic and synthetic reactions. However, there are some limitations for impure lipases that may restrict their widely uses in industrial applications. Purification is sometimes vital for the characterization of the function, structure, and interactions of lipases. The lipase immobilization is also an efficient strategy for increasing the enzyme activity and stability, and getting a simpler recovery. Lipases are naturally produced together with many other proteins that they may occupy some surface of immobilization solid support and decrease the final activity. The coupling of immobilization and purification of lipase will overcome the mentioned problems and obtain the maximum purification yields. The present mini-review will discuss the use of the techniques that permit to join immobilization and purification of lipases in a single step, including control of the immobilization conditions by interfacial activation on hydrophobic supports, the development of specific supports with affinity for lipases, and the use of bio-affinity supports including immuno- and lectin affinity

•Lipases are the biocatalysts with outstanding prospects in industry and medicine.
•Simultaneous immobilization-purification may enhance lipase activity and stability.
•Lipases have a mechanism of interfacial activation in the presence of hydrophobic interfaces.
•The lipase immobilization on hydrophobic supports is a much-utilized strategy.
•Bio-affinity is a promising approach to increase lipase final yield and activity.


Lipase; Immobilization; Purification; Bio-affinity; Interfacial activation

Full Text:



Akhtar, S., Ali Khan, A. and Q. Husain, (2005). ″Simultaneous purification and immobilization of bitter gourd (Momordica charantia) peroxidases on bioaffinity support.″ Journal of Chemical Technology and Biotechnology, 80(2): 198–205.

Ameri, A., Shakibaie, M., Faramarzi, M. A., Ameri, A., Amirpour-Rostami, S., Rahimi, H. R. and H. Forootanfar, (2017). Thermoalkalophilic lipase from an extremely halophilic bacterial strain Bacillus atrophaeus FSHM2: Purification, biochemical characterization and application. ″ Biocatalysis and Biotransformation, 35(3): 151–160.

Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R. C. and R. Fernandez- Lafuente, (2015).″Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts.″ Biotechnology Advances, 33(5): 435–456.

Barbosa, O., Torres, R., Ortiz, C., Berenguer-Murcia, A., Rodrigues, R. C. and R. Fernandez-Lafuente, (2013). ″Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties.″ Biomacromolecules, 14(8): 2433–2462.

Basri, M., Ampon, K., Yunus, W. W., Razak, C. N. A. and A. B. Salleh, (1995). ″Enzymic synthesis of fatty esters by hydrophobic lipase derivatives immobilized on organic polymer beads.″ Journal of the American Oil Chemists’ Society, 72(4): 407–411.

Bilkova, Z., Churáček, J., Kučerová, Z. and J. Turkova, (1997). ″Purification of anti-chymotrypsin antibodies for the preparation of a bioaffinity matrix with oriented chymotrypsin as immobilized ligand.″ Journal of Chromatography B: Biomedical Sciences and Applications, 689(1): 273–279.

Bready, D. and J. Jordaan, (2009). ″Advances in enzyme immobilization.″ Biotechnology Letters, 31: 1639–1650.

Derewenda, U., Brzozowski, A. M., Lawson, D. M. and Z. S. Derewenda, (1992). ″Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase.″ Biochemistry, 31(5): 1532–1541.

Farooqi, M., Saleemuddin, M., Ulber, R., Sosnitza, P. and T. Scheper, (1997). ″Bioaffinity layering: a novel strategy for the immobilization of large quantities of glycoenzymes.″ Journal of Biotechnology, 55(3): 171–179.

Fernandez-Lafuente, R., Armisén, P., Sabuquillo, P., Fernández-Lorente, G. and J. M. Guisán, (1998). ″Immobilization of lipases by selective adsorption on hydrophobic supports.″ Chemistry and Physics of Lipids, 93(1): 185–197.

Fernandez-Lorente, G., Cabrera, Z., Godoy, C., Fernandez-Lafuente, R., Palomo, J. M. and J. M. Guisan, (2008). ″Interfacially activated lipases against hydrophobic supports: Effect of the support nature on the biocatalytic properties.″ Process Biochemistry, 43(10): 1061–1067.

Fernández-Lorente, G., Palomo, J. M., Cabrera, Z., Guisán, J. M. and R. Fernández-Lafuente, (2007). ″Specificity enhancement towards hydrophobic substrates by immobilization of lipases by interfacial activation on hydrophobic supports.″ Enzyme and Microbial Technology, 41(5): 565–569.

Fernández‐Lorente, G., Palomo, J. M., Fuentes, M., Mateo, C., Guisán, J. M. and R. Fernández‐Lafuente, (2003). ″Self‐assembly of Pseudomonas fluorescens lipase into bimolecular aggregates dramatically affects functional properties.″ Biotechnology and Bioengineering, 82(2): 232–237.

Garcia‐Galan, C., Berenguer‐Murcia, Á., Fernandez‐Lafuente, R. and R. C. Rodrigues, (2011). ″Potential of different enzyme immobilization strategies to improve enzyme performance.″ Advanced Synthesis and Catalysis, 353(16): 2885–2904.

Ghasemi, S., Heidary, M., Faramarzi, M. A. and Z. Habibi, (2014). ″Immobilization of lipase on Fe3O4/ZnO core/shell magnetic nanoparticles and catalysis of Michael-type addition to chalcone derivatives.″ Journal of Molecular Catalysis B: Enzymatic, 100: 121–128.

Ghasemi, S., Sadighi, A., Heidary, M., Bozorgi-Koushalshahi, M., Habibi, Z. and M. A. Faramarzi, (2013). ″Immobilisation of lipase on the surface of magnetic nanoparticles and non-porous glass beads for regioselective acetylation of prednisolone.″ IET Nanobiotechnology, 7(3): 100–108.

Hasan-Beikdashti, M., Forootanfar, H., Safiarian, M. S., Ameri, A., Ghahremani, M. H., Khoshayand, M. R. and M. A. Faramarzi, (2012). ″Optimization of culture conditions for production of lipase by a newly isolated bacterium Stenotrophomonas maltophilia.″ Journal of the Taiwan Institute of Chemical Engineers, 43(5): 670–677.

Hasan, F., Shah, A. A. and A. Hameed, (2006). ″Industrial applications of microbial lipases.″ Enzyme and Microbial technology, 39(2): 235–251.

Ikura, K. O. J. I., Okumura, K., Yoshikawa, M., Sasaki, R. and, H. Chiba, (1984). ″Specific immobilization of an enzyme by monoclonal antibody: immobilization of guinea pig liver transglutaminase.″ Biotechnology and Applied Biochemistry, 6(4): 222–231.

Imanparast, S., Hamedi, J. and M. A. Faramarzi, (2017). ″Enzymatic esterification of acylglycerols rich in omega-3 from flaxseed oil by an immobilized solvent-tolerant lipase from Actinomadura sediminis UTMC 2870 isolated from oil-contaminated soil.″ Food Chemistry, 245: 934–942.

Khan, A. A., Akhtar, S. and Q. Husain, (2005). ″Simultaneous purification and immobilization of mushroom tyrosinase on an immunoaffinity support.″ Process Biochemistry, 40(7): 2379–2386.

Khoobi, M., Khalilvand‐Sedagheh, M., Ramazani, A., Asadgol, Z., Forootanfar, H. and M. A. Faramarzi, (2016). ″Synthesis of polyethyleneimine (PEI) and β‐cyclodextrin grafted PEI nanocomposites with magnetic cores for lipase immobilization and esterification.″ Journal of Chemical Technology and Biotechnology, 91(2): 375–384.

Khoobi, M., Motevalizadeh, S. F., Asadgol, Z., Forootanfar, H., Shafiee, A. and M. A. Faramarzi, (2014). ″Synthesis of functionalized polyethylenimine-grafted mesoporous silica spheres and the effect of side arms on lipase immobilization and application.″ Biochemical Engineering Journal, 88: 131–141.

Khoobi, M., Motevalizadeh, S. F., Asadgol, Z., Forootanfar, H., Shafiee, A. and M. A. Faramarzi, (2015). ″Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles for lipase immobilization: characterization and application.″ Materials Chemistry and Physics, 149: 77–86.

López-Gallego, F., Acebrón, I., Mancheño, J. M., Raja, S., Lillo, M. P. and J. M. Guisán Seijas, (2012). ″Directed, strong, and reversible immobilization of proteins tagged with a β-trefoil lectin domain: a simple method to immobilize biomolecules on plain agarose matrixes.″ Bioconjugate Chemistry, 23(3): 565–573.

Mancheño, J. M., Tateno, H., Goldstein, I. J., Martínez-Ripoll, M. and J. A. Hermoso, (2005). ″Structural analysis of the Laetiporus sulphureus hemolytic pore-forming lectin in complex with sugars.″ Journal of Biological Chemistry, 280(17): 17251–17259.

Mateo, C., Palomo, J. M., Fuentes, M., Betancor, L., Grazu, V., López-Gallego, F., Pessela, B. C., Hidalgo, A., Fernández-Lorente, G., Fernández-Lafuente, R. and J.M. Guisán, (2006). ″Glyoxyl agarose: a fully inert and hydrophilic support for immobilization and high stabilization of proteins.″ Enzyme and Microbial Technology, 39(2): 274–280.

Melchers, F. and W. Messer, (1970). ″Enhanced stability against heat denaturation of E. coli wild type and mutant β-galactosidase in the presence of specific antibodies.″ Biochemical and Biophysical Research Communications, 40(3): 570–575.

Mislovicova, D., Gemeiner, P., Sandula, J., Masarova, J., Vikartovska, A. and P. Docolomanský, (2000). ″Examination of bioaffinity immobilization by precipitation of mannan and mannan-containing enzymes with legume lectins.″ Biotechnology and Applied Biochemistry, 31: 153–159.

Mogharabi, M. and M. A. Faramarzi, (2016). ″Are Algae the Future Source of Enzymes?.″ Trends in Peptide and Protein Sciences, 1(1):1–6.

Motevalizadeh, S. F., Khoobi, M., Sadighi, A., Khalilvand-Sedagheh, M., Pazhouhandeh, M., Ramazani, A., Faramarzi, M. A. and A. Shafiee, (2015). ″Lipase immobilization onto polyethylenimine coated magnetic nanoparticles assisted by divalent metal chelated ions.″ Journal of Molecular Catalysis B: Enzymatic, 120: 75–83.

Motevalizadeh, S. F., Khoobi, M., Sadighi, A., Khalilvand-Sedagheh, M., Pazhouhandeh, M., Ramazani, A., Faramarzi, M. A. and A. Shafiee, (2015). ″Lipase immobilization onto polyethylenimine coated magnetic nanoparticles assisted by divalent metal chelated ions.″ Journal of Molecular Catalysis B: Enzymatic, 120: 75–83.

Palomo, J. M., Fuentes, M., Fernández-Lorente, G., Mateo, C., Guisan, J. M. and R. Fernández-Lafuente, (2003). ″General trend of lipase to self-assemble giving bimolecular aggregates greatly modifies the enzyme functionality.″ Biomacromolecules, 4(1): 1–6.

Palomo, J. M., Ortiz, C., Fuentes, M., Fernandez-Lorente, G., Guisan, J. M. and R. Fernandez-Lafuente, (2004). ″Use of immobilized lipases for lipase purification via specific lipase–lipase interactions.″ Journal of Chromatography A, 1038(1): 267–273.

Palomo, J. M., Peñas, M. M., Fernández-Lorente, G., Mateo, C., Pisabarro, A.G., Fernández-Lafuente, R., Ramírez, L. and J.M. Guisán, (2003). ″Solid-phase handling of hydrophobins: immobilized hydrophobins as a new tool to study lipases.″ Biomacromolecules, 4(2): 204–210.

Roy, I. and M. N. Gupta, (2006). ″Bioaffinity immobilization.″ In: Guisan J. M. (Ed.), Immobilization of Enzymes and Cells, Humana Press Inc. NewJersey, pp. 107-116.

Saleemuddin, M., (1999). ″Bioaffinity based immobilization of enzymes.″ Advances in Biochemical Engineering Biotechnology, 64: 203–226.

Salihu, A. and M. Z. Alam, (2015). ″Solvent tolerant lipases: a review.″ Process Biochemistry, 50(1): 86–96.

Sangeetha, R., Arulpandi, I. and A. Geetha, (2011). ″Bacterial lipases as potential industrial biocatalysts: An overview.″ Research Journal of Microbiology, 6(1): 1.

Sato, P. H. and D. M. Walton, (1983). ″Glutaraldehyde-reacted immunoprecipitates of L-gulonolactone oxidase are suitable for administration to guinea pigs.″ Archives of Biochemistry and Biophysics, 221(2): 543–547.

Sheldon, R. A., (2007). ″Enzyme immobilization: the quest for optimum performance.″ Advanced Synthesis & Catalysis, 349(8‐9): 1289–1307.

Taipa, M. A., Liebeton, K., Costa, J. V., Cabral, J. M. and K. E. Jaeger, (1995). ″Lipase from Chromobacterium viscosum: biochemical characterization indicating homology to the lipase from Pseudomonas glumae.″ Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1256(3): 396–402.

Verger, R., (1997). ‘Interfacial activation of lipases: facts and artifacts.″ Trends in Biotechnology, 15(1): 32–38.

Volpato, G., Filice, M., Ayub, M. A., Guisan, J. M. and J. M. Palomo, (2010). ″Single-step purification of different lipases from Staphylococcus warneri.″ Journal of Chromatography A, 1217(4): 473–478.


  • There are currently no refbacks.