• Logo
  • SBMUJournals

Expression of Leishmania major LmSTI1 in Yeast Pichia Pastoris

Mehdi Shokri, Soheila Ajdary, Mina Ebrahimi-Rad, Arash Memarnejadian, Mohamad-Hossein Alimohamadian, Fatemeh Motevali, Farzin Roohvand




Background: Leishmania major LmSTI1 is a conserved protein among different species of leishmania, and expressed in both amastigote and promastigote forms of L. major life cycle. It has previously been expressed in bacterial systems.

Materials and Methods: To express LmSTI1 in the methylotrophic yeast         Pichia pastoris (P. pastoris), the shuttle vector pPICZA containing gene lmsti1 was constructed under the control of the AOX1 promoter. The recombinant vector was electro-transformed into P. pastoris, and induced by 0.5% methanol in the buffered medium. The expression of the LmSTI1 protein was visualized in the total soluble protein of P. pastoris by 12% SDS-PAGE, and further confirmed by Western blotting with L.major-infected mouse sera and HRP-conjugated goat anti-mouse IgG as the first and secondary antibodies, respectively.

Results: The expression level was 0.2% of total soluble proteins.

Conclusion: It might be possible to use this formulation as a whole yeast candidate vaccine against cutaneous leishmanization.


Pichia pastoris, LmSTI1, Leishmania major


Herwaldt BL. Leishmaniasis. The Lancet. 1999;354(9185):1191-9.

Reithinger R, Dujardin J-C, Louzir H, Pirmez C, Alexander B, Brooker S. Cutaneous leishmaniasis. The Lancet Infectious Diseases. 2007;7(9):581-96.

Tripathi P, Singh V, Naik S. Immune response to leishmania: paradox rather than paradigm. FEMS Immunology & Medical Microbiology. 2007;51(2):229-42.

Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. The Journal of experimental medicine. 1989;169(1):59-72.

Launois P, Louis JA, Milon G. The fate and persistence of Leishmania major in mice of different genetic backgrounds: an example of exploitation of the immune system by intracellular parasites. Parasitology. 1997;115 Suppl:S25-32.

Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol. 2002;2(11):845-58.

Sjolander A, Baldwin TM, Curtis JM, Bengtsson KL, Handman E. Vaccination with recombinant Parasite Surface Antigen 2 from Leishmania major induces a Th1 type of immune response but does not protect against infection. Vaccine. 1998;16(20):2077-84.

Coler RN, Reed SG. Second-generation vaccines against leishmaniasis. Trends Parasitol. 2005;21(5):244-9.

von Stebut E, Belkaid Y, Jakob T, Sacks DL, Udey MC. Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: implications for the initiation of anti-Leishmania immunity. The Journal of experimental medicine. 1998;188(8):1547-52.

Reiner NE, Ng W, McMaster WR. Parasite-accessory cell interactions in murine leishmaniasis. II. Leishmania donovani suppresses macrophage expression of class I and class II major histocompatibility complex gene products. Journal of immunology. 1987;138(6):1926-32.

Heinzel FP, Rerko RM, Hujer AM. Underproduction of interleukin-12 in susceptible mice during progressive leishmaniasis is due to decreased CD40 activity. Cell Immunol. 1998;184(2):129-42.

Rodriguez A, Regnault A, Kleijmeer M, Ricciardi-Castagnoli P, Amigorena S. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat Cell Biol. 1999;1(6):362-8.

Reinicke AT, Omilusik KD, Basha G, Jefferies WA. Dendritic cell cross-priming is essential for immune responses to Listeria monocytogenes. PloS one. 2009;4(10):e7210.

Webb JR, Campos-Neto A, Skeiky YA, Reed SG. Molecular characterization of the heat-inducible LmSTI1 protein of Leishmania major. Mol Biochem Parasitol. 1997;89(2):179-93.

Campos-Neto A, Porrozzi R, Greeson K, Coler RN, Webb JR, Seiky YA, et al. Protection against cutaneous leishmaniasis induced by recombinant antigens in murine and nonhuman primate models of the human disease. Infection and immunity. 2001;69(6):4103-8.

Badiee A, Jaafari MR, Khamesipour A. Leishmania major: immune response in BALB/c mice immunized with stress-inducible protein 1 encapsulated in liposomes. Exp Parasitol. 2007;115(2):127-34.

Skeiky YAW, Coler RN, Brannon M, Stromberg E, Greeson K, Thomas Crane R, et al. Protective efficacy of a tandemly linked, multi-subunit recombinant leishmanial vaccine (Leish-111f) formulated in MPLآ® adjuvant. Vaccine. 2002;20(27–28):3292-303.

Franzusoff A, Duke RC, King TH, Lu Y, Rodell TC. Yeasts encoding tumour antigens in cancer immunotherapy. Expert Opin Biol Ther. 2005;5(4):565-75.

Ardiani A, Higgins JP, Hodge JW. Vaccines based on whole recombinant Saccharomyces cerevisiae cells. FEMS Yeast Res. 2010 Dec;10(8):1060-9. PubMed PMID: 20707820. Epub 2010/08/17. eng.

Stubbs AC, Martin KS, Coeshott C, Skaates SV, Kuritzkes DR, Bellgrau D, et al. Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nature medicine. 2001;7(5):625-9.

Lu Y, Bellgrau D, Dwyer-Nield LD, Malkinson AM, Duke RC, Rodell TC, et al. Mutation-Selective Tumor Remission with Ras-Targeted, Whole Yeast-Based Immunotherapy. Cancer Research. 2004;64(15):5084-8.

Franzusoff A, Duke RC, King TH, Lu Y, Rodell TC. Yeasts encoding tumour antigens in cancer immunotherapy. Expert Opinion on Biological Therapy. 2005;5(4):565-75.

Tanaka A, Jensen JD, Prado R, Riemann H, Shellman YG, Norris DA, et al. Whole recombinant yeast vaccine induces antitumor immunity and improves survival in a genetically engineered mouse model of melanoma. Gene Ther. 2011;18(8):827-34.

Bernstein MB, Chakraborty M, Wansley EK, Guo Z, Franzusoff A, Mostbock S, et al. Recombinant Saccharomyces cerevisiae (yeast-CEA) as a potent activator of murine dendritic cells. Vaccine. 2008;26(4):509-21.

Kelly JM. Isolation of DNA and RNA from Leishmania. Methods Mol Biol. 1993;21:123-31.

Hanna M, Xiao W. Isolation of nucleic acids. Methods Mol Biol. 2006;313:15-20.

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-5.

Daly R, Hearn MT. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit. 2005;18(2):119-38.

Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev. 2000;24(1):45-66.

Lin Cereghino GP, Sunga AJ, Lin Cereghino J, Cregg JM. Expression of foreign genes in the yeast Pichia pastoris. Genet Eng (N Y). 2001;23:157-69.

Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM. Heterologous protein production using the Pichia pastoris expression system. Yeast. 2005;22(4):249-70.

Webb JR, Kaufmann D, Campos-Neto A, Reed SG. Molecular cloning of a novel protein antigen of Leishmania major that elicits a potent immune response in experimental murine leishmaniasis. The Journal of Immunology. 1996;157(11):5034-41.

Higgins DR. Overview of protein expression in Pichia pastoris. Curr Protoc Protein Sci. 2001;Chapter 5:Unit5 7.

Kumari A, Gupta R. Novel Strategy of Using Methyl Esters as Slow Release Methanol Source during Lipase Expression by mut+ Pichia pastoris X33. PloS one. 2014;9(8):e104272.

Sha C, Yu X-W, Li F, Xu Y. Impact of Gene Dosage on the Production of Lipase from Rhizopus chinensis CCTCC M201021 in Pichia pastoris. Applied Biochemistry and Biotechnology. 2013;169(4):1160-72.

Mallem M, Warburton S, Li F, Shandil I, Nylen A, Kim S, et al. Maximizing recombinant human serum albumin production in a Mut Pichia pastoris strain. Biotechnol Prog. 2014 Sep 6. PubMed PMID: 25196297. Epub 2014/09/10. Eng.

Cedillo VB, Martinez MJ, Arnau C, Valero F. Production of a sterol esterase from Ophiostoma piceae in batch and fed-batch bioprocesses using different Pichia pastoris phenotypes as cell factory. Biotechnol Prog. 2014;30(5):1012-20.

Lanza AM, Curran KA, Rey LG, Alper HS. A condition-specific codon optimization approach for improved heterologous gene expression in Saccharomyces cerevisiae. BMC systems biology. 2014;8:33.

Kennedy MC, Wang J, Zhang Y, Miles AP, Chitsaz F, Saul A, et al. In vitro studies with recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1): production and activity of an AMA1 vaccine and generation of a multiallelic response. Infection and immunity. 2002;70(12):6948-60.

Kocken CH, Withers-Martinez C, Dubbeld MA, van der Wel A, Hackett F, Valderrama A, et al. High-level expression of the malaria blood-stage vaccine candidate Plasmodium falciparum apical membrane antigen 1 and induction of antibodies that inhibit erythrocyte invasion. Infection and immunity. 2002;70(8):4471-6.

Yadava A, Ockenhouse CF. Effect of codon optimization on expression levels of a functionally folded malaria vaccine candidate in prokaryotic and eukaryotic expression systems. Infection and immunity. 2003;71(9):4961-9.

DOI: https://doi.org/10.22037/nbm.v5i1.11552