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Abstract 

Background: The rodent somatosensory barrel cortex is an ideal model to examine the effect of experience-

dependent plasticity on developing brain circuitry. Sensory deprivation such as whisker deprivation may affect 

neuroanatomical aspects of the brain during developmental processes. The present study designed to investigate 

the possible effects of whisker deprivation on the morphometric characteristics of NADPH-d positive neurons 

in the barrel field cortex of adolescent rats. 
Materials and Methods: Pups were divided into the intact (n=4) and whisker-deprived groups (n=4). In 

whisker-deprived group, the total whiskers of subjects were trimmed every other day from postnatal day (PND) 

0 to PND 60. NADPH-d histochemistry reaction was processed to quantitatively analyze the feature of 

NADPH-d containing neurons of barrel cortex. 

Results: Our results showed that the number of NADPH-d positive neurons remained unchanged in whisker-

deprived group compared to controls. The mean soma diameter, dendritic length and the number of 3
rd

 order 

processes were significantly decreased in the whisker-deprived rats (p<0.05). 

Conclusion: Our results indicate that postnatal whisker deprivation possibly alter NADPH-d/NOS neuronal 

features in the barrel cortex. The functional implications of these data may relate the plasticity of synaptic 

receptive field and developmental brain circuits. 
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Introduction 

Active touch is characterized by the movement of 

tactile sensory. While humans move their finger tips 

for tactile sensation, rodents relay on the mobile set 

of the whiskers arranged in five horizontal rows 

along their snots. The whisker functions in the daily 

activities of rodents, such as decision making and 

environmental exploration. The whisker 

representation part of the primary somatosensory 

cortex (wS1) of the rodents, is called barrel field 

cortex
1-3

. This area in rodents provides a useful model 

system for exploring details of cortical organization in 

mammalian brains. When the rat whisks an object, 

sensory signals project through the trigeminal 

brainstem system and thalamus to the corresponding 

barrel columns in the wS1
4-6

. Early deprivation of 

peripheral sensory information inputs from whiskers 

causes long-lasting changes in the structure and 

function of somatosensory system
7
. 
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Nitric oxide (NO) is an intracellular messenger in all 

vertebrate modulating neural activity
8-10

. The 

nicotinamide adenine dinucleotide phosphate 

diaphorase (NADPH-d) positive neurons are 

extensively present within the central nervous 

system
8
. The neural nitric oxide synthase (nNOS) is 

colocoloized in neuronal populations with NADPH-d 

containing neurons capable of producing NO
11,12

. 

Histochemical staining for NADPH-d is commonly 

used to evaluate the distribution and morphometric 

characteristics of NO containing neurons
9,13,14

. 

NADPH-d stained neurons present intense Golgi-like 

staining of the cell body and processes. Comprising 

about 0.5–2% of all cortical neurons, they are 

dispersed in different cortical layers of barrels field. 

This may indicate a possible role of NO in the 

processing of sensory integration
15

. General 

agreements exists that NADPH-d positive cortical 

neurons represent GABAergic local interneurons
16

. 

Previous studies demonstrated that unilateral whisker 

trimming during early postnatal life results in a 

considerable reduction of GABA-positive synaptic 

terminals in the corresponding barrel cortex
17

. In 

fact, total whisker trimming during this period has 

been shown to affect dendritic arborization patterns 

and spine morphology
18

. 

So far, the effects of total whisker deprivation on the 

morphometric features of NADPH-d positive 

neurons have not been investigated in the barrel 

cortex. Therefore, the quantitative evaluation of the 

density of cell bodies and dendritic banching of 

barrel field NADPH-d positive neurons was 

performed in adolescent rats de-whiskered from 

birth. 

Methods 

Animals 

The experiments were performed in accordance with 

guidelines for caring and using of laboratory animals 

set forth by the research council at Shahid Beheshti 

University of Medical Sciences (Tehran, Iran). Two 

groups of neonatal male Wistar pups and their 

mother (during lactation) were housed under standard 

condition at 22–24°C under light/dark cycles 

(12h/12h); food and water were available ad libitum. 

The first group of pups (n=4) was bilaterally 

whiskers trimmed every other day from postnatal day 

(PND) 0 to 60. The second group of 4 control pups 

was kept whiskers intact.  

Tissue preparation  

At PND 60, pups were deeply anesthetized (100 

mg/kg ketamin and 5 mg/kg xylazine) and perfused 

transcardially with 0.9% saline, followed by cold 4% 

paraformaldehyde in 0.1 M phosphate buffer saline 

(PBS, pH 7.4). The brains were postfixed in the same 

fixative for at least 24 h and cryoprotected in 30% 

sucrose at 4°C overnight. The blocks of brain tissue 

were cut on a cryostat at 50 µm thick coronal sections. 

The sections were collected in 0.1 M PBS (pH 7.4) for 

histochemical processing
19

. 

NADPH-d histochemistry 

Sections were pre-incubated in 0.2% Triton X-100 in 

0.1 M PBS (pH 7.4) for 20 min and then reacted for 1 

h at 37°C in a solution containing 0.5 mg/ml b-

NADPH (Sigma, Saint Louis, MO, USA), 0.6 mg/ml 

nitroblue tetrazolium (NBT, Sigma, Saint Louis, MO, 

USA), 0.3% Triton X-100 dissolved in 0.1 MPBS (pH 

7.4). The histochemical reaction was monitored by 

inspecting sections under the microscope. At the end 

of the reaction, sections were rinsed in 0.1 M PBS (pH 

7.4) and then mounted on gelatinized glass slides, 

counterstained with neutral red (0.1%) and 

coverslipped
19

. 

Counting procedure and image analysis 

Sections were examined under the light microscope to 

localize cells exhibiting NADPH-d positive reaction. 

A camera lucida system using a 40x objective was 

used to determine the density and two-dimensional 

reconstruction of labeled cells. Eight randomly 

selected sections per animal were counted. The barrel 

cortex area was determined according to Paxinos and 

Watson atlas (2007)
20

 and Nogueira-Campo et al. 

(2012)
15

.  

We randomly selected 160 NADPH-d positive neurons 

from each group. Cells were selected for 

reconstruction depending on their integrity of the 

dendritic arborization in a single histological section. 

Only cells with complete typically thin distal dendritic 

arborizations were included for analysis (Figure 1, C 

and D). Cells with artificially cut dendrites or 

apparently not fully reacted were not included in our 

results. Four morphometric parameters were 

quantitatively evaluated
21,22

 in the reconstructed 

neurons: 1- soma diameter (µm) measured at the 
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maximal axis of cell body, 2- Number and length of 

dendrites (µm) per 1
st
, 2

nd 
and 3

rd
 order rows (Figure 

1, C and D), and 3- The longest dendritic branch 

(µm). 

Data analysis 

Statistical differences between labeled cells in 

different groups were determined by student's t-test.  

The tests were performed using SPSS version 19.0 

software. All data were expressed as mean±SEM. 

The level of significance was set at p<0.05. 

Results 

On the day of experiment, control (180±10 g) and 

whisker deprived (178±13 g) rats exhibited similar 

body weight gain. Quantitative analysis revealed a 

homogenous density of NADPH-d positive neurons 

throughout the boundaries of barrel cortex in 

whisker-deprived and control pups (Figure 2A). 

However, a significant decrease of the soma diameter 

was observed in whisker-deprived group compared to 

intact group (p<0.05; Figure 2B). Although, only the 

number of 3
rd

 order dendritic branches was 

significantly reduced (p<0.05; Figure 2D), but the 

length of all 1
st
, 2

nd
 and 3

rd
 order branches was 

shorter in whisker deprived rats in comparison to 

control ones (p<0.05, p<0.05 and p<0.01, 

respectively; Figure 2E). The extension of longest 

dendritic processes shows 25% reduction in whisker 

deprived group compared to their control homologues 

(p<0.01; Figure 2C). 

Discussion 

Nitric oxide (NO) is involved in the control of cerebral 

blood flow, metabolism
23

 and experience-dependent 

plasticity
24

. It has been reported that the cortical 

NADPH-d positive neurons co-localize with other 

substances such as GABA and calcium-binding 

proteins
25

, parvalbumin
26

 and somatostatin
27

. The 

results of the present study showed that neonatal 

whisker deprivation did not appear to affect the 

number of NADPH-d positive neurons in the barrel 

cortex. In consistent, unilateral nares occlusion did not 

affect the number of NADPH-d positive cells in the 

olfactory cortex
28

. Moreover, whisker trimming 

(PND1-PND56) had no effect on the density of 

parvalbumin-positive neurons in the barrel subfield of 

mice
29

. It has been also noted that the distribution 

pattern of NADPH-d neurons is comparatively similar 

to other subgroups of interneurons, such as GABA in 

the barrel cortex of small rodents
30

. Micheva et al. 

(1995) reported that unilateral sensory deprivation 

induces a decrease in the intracortical GABA 

inhibitory circuitry of barrel cortex
31

. 

Several studies using experience-dependent paradigms 

 
 

Figure 1. Representative photomicrographs of the barrel cortex in intact (A) and whisker-deprived (B) rats, indicating the location of 

selected NADPH-d positive neurons. C and D are camera lucida reconstructions of NADPH-d positive neurons in intact and whisker 

deprived rats with their corresponding photomicrographs, respectively. Abbreviations: P1-3; processes 1-3, S; soma. 
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have demonstrated neocortical synaptic and 

anatomical plasticity following sensory 

deprivation
1,32-34

. In the present study, a significant 

reduction in the soma diameter of NADPH-d positive 

cell was observed in the whisker-trimmed rats. 

Moreover, these labeled neurons were smaller and 

less branched than those of intact rats. These results 

may confirmed by Chau et al. (2014) that 

demonstrated a significant increase in the spine 

density of pyramidal neurons in barrel cortex of the 

spared whisker barrels in contrast to reduced number 

of spines in deprived whisker barrels
35

. Decrease in 

cell body size or processes of NADPH-d positive 

neurons in the barrel cortical area may occurs due to 

the secondary effects of shorter thalamocortical 

inputs following whisker deprivation
34

.  

Axons, dendrites, and spines of neurons are highly 

dynamic structures
36

. Sensory deprivation might 

modify the connectional phenotype of cortical 

neurons by altering the relation between laminar fate 

and connectivity
28

. Decrease in the size and 

branching complexity of the dendritic trees of 

NADPH-d positive neurons may alter functional 

properties of cortical circuits in whisker-deprived 

rats
36,37

. A decline in the inhibitory control of 

excitatory neurons might explain the high rate of 

seizures found in sensory deprived animals
38

. 

Our results may suggest reduced dendritic receptive 

filed and possible synaptic impairment of barrel cortex 

nitritergic neurons following chronic whisker 

trimming from birth to adolescence period. 

Conclusion 

Smaller cell bodies and shorter dendritic ramifications 

may severely affect the biological activities of barrel 

NADPH-d containing neurons in long lasting whisker 

deprived rats. Further experimental studies will better 

explain the role of these neurons in response to the 

sensory experience dependency. 
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