• Logo
  • SBMUJournals

Gene Polymormisms and Prostate Cancer: A Systematic Review

Faezeh Azizi, Mohammad Soleimani, Seyed Yousef Hosseini, Saeid Amini Nik, Jalil Hosseini
17

Views

PDF

Abstract

Introduction: The prostate is a gland that surrounds men's urethra and helps to produce semen. In developed countries, prostate cancer (PCa.) is the second most common and lethal disease in men. Hereditary history of PCa. is a major contributor to this cancer? While a number of genetic and molecular changes have been reported in PCa, the general picture of the genetic aberrations is needed in Iranian population.

Methods: In this study, a literature search from Jan. 2000 to June 2018 was performed through the PubMed, Google Scholar, Scopus, Web of Science, IranMedex, MEDLIB, IranDoc and Scientific Information databases using the keywords “genetic polymorphisms”, “prostate cancer”, “Iranian, and compare with regional and international population”.

Results: The results revealed that several genome-wide association studies (such as rs2070744 and rs1799983 in the eNOS, rs243865 in the MMP2, rs1902023 in the UGT2B15, rs266882 in the PSA, rs10625775443 in the GNB3, rs 1800682 in the FAS, rs12052398 and rs13393577 in the ERBB4, rs181133 in the MTHFR, rs 1805087 in the MTR, rs1805355 in the MSH3, (rs60271534 in the CYP19, rs2234693 and rs9340799 in the ER-a, rs4986938 and rs1256049 in the ER-b) and single-nucleotide polymorphisms in important pathways (such as angiogenesis, androgen receptor binding site, cell signaling, folate metabolism, DNA repair, hormone synthesis and metabolism polymorphisms ) involved in prostate cancer occurrence and mechanism could serve as candidate biomarkers for the detection of PCa. The most important results of the all studied articles is summarized in Table 1 and 2.

Conclusion: Several studies have been conducted on the family history of PCa. The main reason for this gathering is to inherit the involved genes. Additional studies are required to decipher precisely the gene combinations and personalize the management of prostate cancer. This article is the first comprehensive overview of genetic investigations of gene polymorphisms on PCa. in Iran.

 


References

Hashemi M, Moradi N, Ziaee SA, Narouie B, Soltani MH, Rezaei M, et al. Association between single nucleotide polymorphism in miR-499, miR-196a2, miR-146a and miR-149 and prostate cancer risk in a sample of Iranian population. J Adv Res. 2016;7(3):491-8.

Nikolic Z, Savic Pavicevic D, Vucic N, Cidilko S, Filipovic N, Cerovic S, et al. Assessment of association between genetic variants in microRNA genes hsa-miR-499, hsa-miR-196a2 and hsa-miR-27a and prostate cancer risk in Serbian population. Exp Mol Pathol. 2015;99(1):145-50.

Ansari BS, Vasudevan R, Mirinargesi M, Patimah I, Sabariah A, Pasalar P, et al. Lack of association of glutathione S-transferase gene polymorphisms in Iranian prostate cancer subjects. American Journal of Biochemistry and Biotechnology. 2009;5(1):30-4.

Adabi Z, Ziaei SAM, Imani M, Samzadeh M, Narouie B, Jamaldini SH, et al. Genetic polymorphism of MMP2 gene and susceptibility to prostate cancer. Archives of medical research. 2015;46(7):546-50.

Salavati LS, Tafvizi F, Manjili H. The association between MMP2− 1306 C> T (rs243865) polymorphism and risk of prostate cancer. Irish Journal of Medical Science (1971-). 2017;186(1):103-11.

Malik SS, Kazmi Z, Fatima I, Shabbir R, Perveen S, Masood N. Genetic polymorphism of GSTM1 and GSTT1 and risk of prostatic carcinoma-a meta-analysis of 7,281 prostate cancer cases and 9,082 healthy controls. Asian Pac J Cancer Prev. 2016;17:2629-35.

Srivastava P, Lone TA, Kapoor R, Mittal RD. Association of promoter polymorphisms in MMP2 and TIMP2 with prostate cancer susceptibility in North India. Archives of medical research. 2012;43(2):117-24.

George GP, Gangwar R, Mandal RK, Sankhwar SN, Mittal RD. Genetic variation in microRNA genes and prostate cancer risk in North Indian population. Mol Biol Rep. 2011;38(3):1609-15.

Nikolic ZZ, Savic Pavicevic D, Vukotic VD, Tomovic SM, Cerovic SJ, Filipovic N, et al. Association between genetic variant in hsa-miR-146a gene and prostate cancer progression: evidence from Serbian population. Cancer Causes Control. 2014;25(11):1571-5.

Safarinejad MR, Safarinejad S, Shafiei N, Safarinejad S, editors. Effects of the T-786C, G894T, and Intron 4 VNTR (4a/b) polymorphisms of the endothelial nitric oxide synthase gene on the risk of prostate cancer. Urologic Oncology: Seminars and Original Investigations; 2013: Elsevier.

Agalliu I, Langeberg WJ, Lampe JW, Salinas CA, Stanford JL. Glutathione S‐transferase M1, T1, and P1 polymorphisms and prostate cancer risk in middle‐aged men. The Prostate. 2006;66(2):146-56.

Ashtiani ZO, Hasheminasab SM, Ayati M, Goulian BS, Modarressi MH. Are GSTM1, GSTT1 and CAG repeat length of androgen receptor gene polymorphisms associated with risk of prostate cancer in Iranian patients? Pathol Oncol Res. 2011;17(2):269-75.

Dos Reis ST, Pontes J, Jr., Villanova FE, Borra PM, Antunes AA, Dall'oglio MF, et al. Genetic polymorphisms of matrix metalloproteinases: susceptibility and prognostic implications for prostate cancer. J Urol. 2009;181(5):2320-5.

Ziaei SAM, Samzadeh M, Jamaldini SH, Afshari M, Haghdoost AA, Hasanzad M. Endothelial nitric oxide synthase Glu298Asp polymorphism as a risk factor for prostate cancer. The International journal of biological markers. 2013;28(1):43-8.

Xu B, Feng NH, Li PC, Tao J, Wu D, Zhang ZD, et al. A functional polymorphism in Pre-miR-146a gene is associated with prostate cancer risk and mature miR-146a expression in vivo. Prostate. 2010;70(5):467-72.

Hosseini M, Jahani Y, MAHMOUDI M, Eshraghian M, Yahyapour Y, KESHTKAR AA. The assessment of risk factors for prostate cancer in Mazandaran province, Iran. 2008.

MEHNI FB, FARAJNIYA S, KHOSROSHAHI SA, FAKHRJOU A. Investigating the frequency of 460C/T VEGF gene in prostate cancer patients in North West of Iran. Cumhuriyet Science Journal. 2015;36(4):156-63.

Safarinejad MR, Shafiei N, Safarinejad SH. Glutathione S-transferase gene polymorphisms (GSTM1, GSTT1, GSTP1) and prostate cancer: a case-control study in Tehran, Iran. Prostate Cancer Prostatic Dis. 2011;14(2):105-13.

Branković A, Brajušković G, Nikolić Z, Vukotić V, Cerović S, Savić‐Pavićević D, et al. Endothelial nitric oxide synthase gene polymorphisms and prostate cancer risk in S erbian population. International journal of experimental pathology. 2013;94(6):355-61.

RAFIEMANESH H, GHONCHEH M, SALEHINIYA H, MOHAMMADIAN HA. EPIDEMIOLOGY OF PROSTATE CANCER AND ITS INCIDENCE TRENDS IN IRAN. 2016.

Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiology and Prevention Biomarkers. 2010;19(8):1893-907.

Pournourali M, Tarang AR, Yousefi M. The association between 1349T>G polymorphism of ApE1 gene and the risk of prostate cancer in northern Iran. Cell Mol Biol (Noisy-le-grand). 2015;61(4):21-4.

Medeiros R, Morais A, Vasconcelos A, Costa S, Pinto D, Oliveira J, et al. Endothelial nitric oxide synthase gene polymorphisms and genetic susceptibility to prostate cancer. European journal of cancer prevention. 2002;11(4):343-50.

Ceylan G, Ceylan C, Gülmemmedov B, Tonyali S, Odabaş O, Gozalan A. Polymorphisms of eNOS, catalase, and myeloperoxidase genes in prostate cancer in Turkish men: preliminary results. Genet Mol Res. 2016;15(3):10.4238.

Sattarifard H, Hashemi M, Hassanzarei S, Narouie B, Bahari G. Association between genetic polymorphisms of long non-coding RNA PRNCR1 and prostate cancer risk in a sample of the Iranian population. Mol Clin Oncol. 2017;7(6):1152-8.

Hui J, Xu Y, Yang K, Liu M, Wei D, Wei D, et al. Study of genetic variants of 8q21 and 8q24 associated with prostate cancer in Jing-Jin residents in northern China. Clin Lab. 2014;60(4):645-52.

Jafary F, Salehi M, Sedghi M, Nouri N, Jafary F, Sadeghi F, et al. Association between mismatch repair gene MSH3 codons 1036 and 222 polymorphisms and sporadic prostate cancer in the Iranian population. Asian Pac J Cancer Prev. 2012;13(12):6055-7.

Klein RJ, Hallden C, Gupta A, Savage CJ, Dahlin A, Bjartell A, et al. Evaluation of multiple risk–associated single nucleotide polymorphisms versus prostate-specific antigen at baseline to predict prostate cancer in unscreened men. European urology. 2012;61(3):471-7.

Diler SB, Oden A. The T -786C, G894T, and Intron 4 VNTR (4a/b) Polymorphisms of the Endothelial Nitric Oxide Synthase Gene in Prostate Cancer Cases. Genetika. 2016;52(2):249-54.

Kahnamouei SA, Narouie B, Sotoudeh M, Mollakouchekian MJ, Simforoosh N, Ziaee S, et al. Association of XPC Gene Polymorphisms with Prostate Cancer Risk. Clinical laboratory. 2016;62(6):1009-15.

Askari F, Parizi M, Rashidkhani B. Dietary patterns and prostate cancer: a case-control study. Iranian Journal of Nutrition Sciences & Food Technology. 2013;8(3):17-25.

Pouresmaeili F, Hosseini SJ, Farzaneh F, Karimpour A, Azargashb E, Yaghoobi M, et al. Evaluation of environmental risk factors for prostate cancer in a population of Iranian patients. Asian Pacific journal of cancer prevention: APJCP. 2014;15(24):10603-5.

Pourmand G, Salem S, Mehrsai A, Lotfi M, Amirzargar MA, Mazdak H, et al. The risk factors of prostate cancer: a multicentric case-control study in Iran. Asian Pac J Cancer Prev. 2007;8(3):422-8.

Sadjadi A, Nooraie M, Ghorbani A, Alimohammadian M, Zahedi M-J, Darvish-Moghadam S, et al. The incidence of prostate cancer in Iran: results of a population-based cancer registry. Archives of Iranian medicine. 2007;10(4):481-5.

Habibi M, Mirfakhraie R, Khani M, Rakhshan A, Azargashb E, Pouresmaeili F. Genetic variations in UGT2B28, UGT2B17, UGT2B15 genes and the risk of prostate cancer: A case-control study. Gene. 2017;634:47-52.

Coughlin SS, Hall IJ. A review of genetic polymorphisms and prostate cancer risk. Annals of epidemiology. 2002;12(3):182-96.

Marzec J, Mao X, Li M, Wang M, Feng N, Gou X, et al. A genetic study and meta-analysis of the genetic predisposition of prostate cancer in a Chinese population. Oncotarget. 2016;7(16):21393.

Samzadeh M, Hasanzad M, Jamaldini SH, Haghdoost AA, Afshari M, Ziaee SA. Association of G/A polymorphism, rs266882, in AREI region of the prostate-specific antigen gene with prostate cancer risk and clinicopathological features. Urol J. 2012;9(4):691-9.

Hashemi M, Amininia S, Ebrahimi M, Simforoosh N, Basiri A, Ziaee SAM, et al. Association between polymorphisms in TP53 and MDM2 genes and susceptibility to prostate cancer. Oncol Lett. 2017;13(4):2483-9.

Marangoni K, Neves AF, Cardoso AM, Santos WK, Faria PC, Goulart LR. The endothelial nitric oxide synthase Glu-298-Asp polymorphism and its mRNA expression in the peripheral blood of patients with prostate cancer and benign prostatic hyperplasia. Cancer detection and prevention. 2006;30(1):7-13.

Ntais C, Polycarpou A, Ioannidis JP. Association of GSTM1, GSTT1, and GSTP1 gene polymorphisms with the risk of prostate cancer: a meta-analysis. Cancer Epidemiology and Prevention Biomarkers. 2005;14(1):176-81.

Lindstrom S, Schumacher F, Siddiq A, Travis RC, Campa D, Berndt SI, et al. Characterizing associations and SNP-environment interactions for GWAS-identified prostate cancer risk markers—results from BPC3. PloS one. 2011;6(2):e17142.

Wadelius M, Autrup JL, Stubbins MJ, Andersson S-O, Johansson J-E, Wadelius C, et al. Polymorphisms in NAT2, CYP2D6, CYP2C19 and GSTP1 and their association with prostate cancer. Pharmacogenetics. 1999;9(3):333-40.

Babaei F, Ahmadi SA, Abiri R, Rezaei F, Naseri M, Mahmoudi M, et al. The TP53 Codon 72 Polymorphism and Risk of Sporadic Prostate Cancer among Iranian Patients. Iran J Public Health. 2014;43(4):453-9.

Rezaee M, Hossaini W, Nikkhoo B, Khodabandeloo M, Rahmani M. The association between RNASEL R462Q polymorphism and prostate cancer. Scientific Journal of Kurdistan University of Medical Sciences. 2017;22(3).

Wiklund F, Jonsson BA, Brookes AJ, Stromqvist L, Adolfsson J, Emanuelsson M, et al. Genetic analysis of the RNASEL gene in hereditary, familial, and sporadic prostate cancer. Clin Cancer Res. 2004;10(21):7150-6.

Babaei F, Ahmadi A, Rezaei F, Jalilvand S, Ghavami N, Mahmoudi M, et al. Xenotropic Murine Leukemia Virus-Related Virus and RNase L R462Q Variants in Iranian Patients With Sporadic Prostate Cancer. Iran Red Crescent Med J. 2015;17(12):e19439.

Gsur A, Haidinger G, Hinteregger S, Bernhofer G, Schatzl G, Madersbacher S, et al. Polymorphisms of glutathione‐S‐transferase genes (GSTP1, GSTM1 and GSTT1) and prostate‐cancer risk. International journal of cancer. 2001;95(3):152-5.

Salehi Z, Hadavi M. Analysis of the codon 72 polymorphism of TP53 and human papillomavirus infection in Iranian patients with prostate cancer. Journal of medical virology. 2012;84(9):1423-7.

Sadeghi-Gandomani H, Yousefi M, Rahimi S, Yousefi S, Karimi-Rozveh A, Hosseini S, et al. The Incidence, Risk Factors, and Knowledge About the Prostate Cancer through Worldwide and Iran. World Cancer Research Journal. 2017;4(4).

Doosti A, Dehkordi PG. The p53 codon 72 polymorphism and association to prostate cancer in Iranian patients. African Journal of Biotechnology. 2011;10(60):12821-5.

Daugherty SE, Hayes RB, Yeager M, Andriole GL, Chatterjee N, Huang WY, et al. RNASEL Arg462Gln polymorphism and prostate cancer in PLCO. The Prostate. 2007;67(8):849-54.

Nam RK, Zhang WW, Jewett MA, Trachtenberg J, Klotz LH, Emami M, et al. The use of genetic markers to determine risk for prostate cancer at prostate biopsy. Clin Cancer Res. 2005;11(23):8391-7.

Hasanzad M, Ziaei SAM, Montazeri V, Afshari M, Jamaldini SH, Imani M, et al. Association Between NAT2 Polymorphisms and Prostate Cancer. Iranian Journal of Cancer Prevention. 2017;10(2).

Hashemi M, Bahari G, Sarhadi S, Eskandari E, Narouie B, Taheri M, et al. 4-bp insertion/deletion (rs3783553) polymorphism within the 3'UTR of IL1A contributes to the risk of prostate cancer in a sample of Iranian population. J Cell Biochem. 2018;119(3):2627-35.

Ventimiglia E, Salonia A, Briganti A, Montorsi F. Re: Family History and Probability of Prostate Cancer, Differentiated by Risk Category - A Nationwide Population-based Study. Eur Urol. 2017;71(1):143-4.

Onen IH, Konac E, Eroglu M, Guneri C, Biri H, Ekmekci A. No association between polymorphism in the vascular endothelial growth factor gene at position -460 and sporadic prostate cancer in the Turkish population. Mol Biol Rep. 2008;35(1):17-22.

Behfarjam F, Rostamzadeh J, Zarei MA, Nikkhoo B. Association of Two Polymorphic Codons in P53 and ABCC1 Promoter with Prostate Cancer. Iran J Biotechnol. 2015;13(1):49-54.

Hashemi M, Shahkar G, Simforoosh N, Basiri A, Ziaee SA, Narouie B, et al. Association of polymorphisms in PRKCI gene and risk of prostate cancer in a sample of Iranian Population. Cell Mol Biol (Noisy-le-grand). 2015;61(5):16-21.

Liao H, Zhang L, Cheng P, Pu Y, Wu Y, Li Z, et al. [Insertion/deletion polymorphism of IL1A 3'-UTR associated with the susceptibility of prostate cancer ]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2014;45(6):956-9.

Lin C-C, Wu H-C, Tsai F-J, Chen H-Y, Chen W-C. Vascular endothelial growth factor gene− 460 C/T polymorphism is a biomarker for prostate cancer. Urology. 2003;62(2):374-7.

Wang F, Qin Z, Si S, Tang J, Xu L, Xu H, et al. Lack of association between NAT2 polymorphism and prostate cancer risk: a meta-analysis and trial sequential analysis. Oncotarget. 2017;8(34):57440-50.

Safarinejad MR, Safarinejad S, Shafiei N, Safarinejad S. G Protein β3 Subunit Gene C825T Polymorphism and its Association with the Presence and Clinicopathological Characteristics of Prostate Cancer. The Journal of urology. 2012;188(1):287-93.

Hashemi M, Moradi N, Rezaei M, Sanaei S, Ziaee SA, Narouie B, et al. ERBB4 gene polymorphisms and the risk of prostate cancer in a sample of Iranian Population. Cell Mol Biol (Noisy-le-grand). 2016;62(10):43-8.

Bratt O, Drevin L, Akre O, Garmo H, Stattin P. Family history and probability of prostate cancer, differentiated by risk category: a nationwide population-based study. Journal of the National Cancer Institute. 2016;108(10):djw110.

Sabour R, Fard ZT. The relationship of age and serum prostate-specific antigen with FAS 1377 G/A in prostate cancer. Libyan Journal of Medical Sciences. 2018;2(1):8.

Karimpur-Zahmatkesh A, Farzaneh F, Pouresmaeili F, Hosseini J, Azarghashb E, Yaghoobi M. A2 allele polymorphism of the CYP17 gene and prostate cancer risk in an iranian population. Asian Pac J Cancer Prev. 2013;14(2):1049-52.

Hooker S, Bonilla C, Akereyeni F, Ahaghotu C, Kittles RA. NAT2 and NER genetic variants and sporadic prostate cancer susceptibility in African Americans. Prostate Cancer Prostatic Dis. 2008;11(4):349-56.

Omrani MD, Taghipour-Bazargani S, Salari-Lak S, Bagheri M. Association of codon 10 polymorphism of the transforming growth factor beta 1 gene with prostate cancer and hyperplasia in an Iranian population. Urol Int. 2009;83(3):329-32.

Hashemi M, Rezaei M, Narouie B, Simforoosh N, Basiri A, Ziaee SA, et al. Association between LAPTM4B gene polymorphism and prostate cancer susceptibility in an Iranian population. Mol Cell Oncol. 2016;3(6):e1169342.

Chen L, Ambrosone CB, Lee J, Sellers TA, Pow-Sang J, Park JY. Association between polymorphisms in the DNA repair genes XRCC1 and APE1, and the risk of prostate cancer in white and black Americans. The Journal of urology. 2006;175(1):108-12.

Narouie B, Ziaee SAM, Basiri A, Hashemi M. Functional polymorphism at the miR-502-binding site in the 3' untranslated region of the SETD8 gene increased the risk of prostate cancer in a sample of Iranian population. Gene. 2017;626:354-7.

Taheri M, Pouresmaeili F, Omrani MD, Habibi M, Sarrafzadeh S, Noroozi R, et al. Association of ANRIL gene polymorphisms with prostate cancer and benign prostatic hyperplasia in an Iranian population. Biomark Med. 2017;11(5):413-22.

Beuten J, Gelfond JA, Franke JL, Weldon KS, Crandall AC, Johnson-Pais TL, et al. Single and multigenic analysis of the association between variants in 12 steroid hormone metabolism genes and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2009;18(6):1869-80.

Gong C, Hu X, Gao Y, Cao Y, Gao F, Mo Z. A meta-analysis of the NAT1 and NAT2 polymorphisms and prostate cancer: a huge review. Med Oncol. 2011;28(1):365-76.

Jing B, Wang J, Chang W-L, Li B, Chen J, Niu Y-J. Association of the polymorphism of APE1 gene with the risk of prostate cancer in Chinese Han population. Clinical laboratory. 2013;59(1-2):163-8.

Mousavi M, Jalilvand E. Association of CYP17 and SRD5A2 gene polymorphisms with Prostate cancer risk among Iranian and Indian populations. Armaghane Danesh Bimonthly Journal. 2016;20(11):1024-35.

Langsenlehner T, Langsenlehner U, Renner W, Krippl P, Mayer R, Wascher TC, et al. Single nucleotide polymorphisms and haplotypes in the gene for vascular endothelial growth factor and risk of prostate cancer. European journal of cancer. 2008;44(11):1572-6.

Setiawan VW, Schumacher FR, Haiman CA, Stram DO, Albanes D, Altshuler D, et al. CYP17 genetic variation and risk of breast and prostate cancer from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). Cancer Epidemiol Biomarkers Prev. 2007;16(11):2237-46.

Omrani MD, Bazargani S, Bagheri M, Yazdan-nejad H. Association of catechol-o-methyl transferase gene polymorphism with prostate cancer and benign prostatic hyperplasia. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences. 2009;14(4):217.

Brureau L, Moningo D, Emeville E, Ferdinand S, Punga A, Lufuma S, et al. Polymorphisms of Estrogen Metabolism-Related Genes and Prostate Cancer Risk in Two Populations of African Ancestry. PLoS One. 2016;11(4):e0153609.

Hirata H, Hinoda Y, Kawamoto K, Kikuno N, Suehiro Y, Okayama N, et al. Mismatch repair gene MSH3 polymorphism is associated with the risk of sporadic prostate cancer. J Urol. 2008;179(5):2020-4.

Farzaneh F, Karimpur-zahmatkesh A, Hosseini J, Pouresmaeili F, Movafagh A, Azarghashb E, et al. No association between TTTA short tandem repeat (STR) of the CYP19 gene and prostate cancer risk in Iranian population: A case control study. 2014.

Low Y-L, Taylor JI, Grace PB, Mulligan AA, Welch AA, Scollen S, et al. Phytoestrogen exposure, polymorphisms in COMT, CYP19, ESR1, and SHBG genes, and their associations with prostate cancer risk. Nutrition and cancer. 2006;56(1):31-9.

Hashemi M, Danesh H, Bizhani F, Narouie B, Sotoudeh M, Nouralizadeh A, et al. Pri-miR-34b/c rs4938723 polymorphism increased the risk of prostate cancer. Cancer Biomarkers. 2017;18(2):155-9.

Wang M, Li Q, Gu C, Zhu Y, Yang Y, Wang J, et al. Polymorphisms in nucleotide excision repair genes and risk of primary prostate cancer in Chinese Han populations. Oncotarget. 2017;8(15):24362-71.

Cussenot O, Azzouzi AR, Nicolaiew N, Fromont G, Mangin P, Cormier L, et al. Combination of polymorphisms from genes related to estrogen metabolism and risk of prostate cancers: the hidden face of estrogens. Journal of clinical oncology. 2007;25(24):3596-602.

Agalliu I, Kwon EM, Salinas CA, Koopmeiners JS, Ostrander EA, Stanford JL. Genetic variation in DNA repair genes and prostate cancer risk: results from a population-based study. Cancer Causes Control. 2010;21(2):289-300.

Mirecka A, Paszkowska-Szczur K, Scott RJ, Gorski B, van de Wetering T, Wokolorczyk D, et al. Common variants of xeroderma pigmentosum genes and prostate cancer risk. Gene. 2014;546(2):156-61.

Zou L-w, Xu X-j, Liu T, Wang H-y, Fan W-j, Wang X-h, et al. No association between COMT Val158Met polymorphism and prostate cancer risk: a meta-analysis. Genetic testing and molecular biomarkers. 2013;17(1):78-84.

Huang Y-C, Chen M, Lin M-W, Chung M-Y, Chang Y-H, Huang WJ-S, et al. CYP19 TCT tri-nucleotide Del/Del genotype is a susceptibility marker for prostate cancer in a Taiwanese population. Urology. 2007;69(5):996-1000.

Hashemi M, Bahari G, Sattarifard H, Narouie B. Evaluation of a 3-base pair indel polymorphism within pre-microRNA-3131 in patients with prostate cancer using mismatch polymerase chain reaction-restriction fragment length polymorphism. Mol Clin Oncol. 2017;7(4):696-700.

Fard-Esfahani P, Mohammadi Torbati P, Hashemi Z, Fayaz S, Golkar M. Analysis of relation between C677T genotype in MTHFR gene and prostatic cancer in Iranian males. Acta Med Iran. 2012;50(10):657-63.

Fukuda H, Tsuchiya N, Narita S, Kumazawa T, Horikawa Y, Inoue T, et al. Clinical implication of vascular endothelial growth factor T-460C polymorphism in the risk and progression of prostate cancer. Oncology reports. 2007;18(5):1155-63.

Kachakova D, Mitkova A, Popov E, Beltcheva O, Vlahova A, Dikov T, et al. Polymorphisms in androgen metabolism genes AR, CYP1B1, CYP19, and SRD5A2 and prostate cancer risk and aggressiveness in Bulgarian patients. Turkish journal of medical sciences. 2016;46(3):626-40.

de Vogel S, Ulvik A, Meyer K, Ueland PM, Nygård O, Vollset SE, et al. Sarcosine and other metabolites along the choline oxidation pathway in relation to prostate cancer—a large nested case–control study within the JANUS cohort in Norway. International journal of cancer. 2014;134(1):197-206.

Shahkar G, Hashemi M, Eskandari E, Ziaee SAM, Basiri A, Narouie B, et al. The rs10993994 functional polymorphism in the MSMB gene promoter increase the risk of prostate cancer in an Iranian population. Meta Gene. 2017;14:100-4.

Shui IM, Lindstrom S, Kibel AS, Berndt SI, Campa D, Gerke T, et al. Prostate cancer (PCa) risk variants and risk of fatal PCa in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium. Eur Urol. 2014;65(6):1069-75.

Holgersson MB, Giwercman A, Bjartell A, Wu FC, Huhtaniemi IT, O'Neill TW, et al. Androgen receptor polymorphism dependent variation in prostate specific antigen concentrations of European men. Cancer Epidemiology and Prevention Biomarkers. 2014:cebp. 0376.2014.

Chang BL, Spangler E, Gallagher S, Haiman CA, Henderson B, Isaacs W, et al. Validation of genome-wide prostate cancer associations in men of African descent. Cancer Epidemiol Biomarkers Prev. 2011;20(1):23-32.

Chang BL, Cramer SD, Wiklund F, Isaacs SD, Stevens VL, Sun J, et al. Fine mapping association study and functional analysis implicate a SNP in MSMB at 10q11 as a causal variant for prostate cancer risk. Hum Mol Genet. 2009;18(7):1368-75.

Safarinejad MR, Shafiei N, Safarinejad S. Genetic susceptibility of methylenetetrahydrofolate reductase (MTHFR) gene C677T, A1298C, and G1793A polymorphisms with risk for bladder transitional cell carcinoma in men. Medical Oncology. 2011;28(1):398-412.

Abedinzadeh M, Zare-Shehneh M, Neamatzadeh H, Abedinzadeh M, Karami H. Association between MTHFR C677T Polymorphism and Risk of Prostate Cancer: Evidence from 22 Studies with 10,832 Cases and 11,993 Controls. Asian Pac J Cancer Prev. 2015;16(11):4525-30.

Price DK, Chau CH, Till C, Goodman PJ, Baum CE, Ockers SB, et al. Androgen receptor CAG repeat length and association with prostate cancer risk: results from the prostate cancer prevention trial. The Journal of urology. 2010;184(6):2297-302.

Johansson M, Van Guelpen B, Hultdin J, Wiklund F, Adami H-O, Bälter K, et al. The MTHFR 677C→ T polymorphism and risk of prostate cancer: results from the CAPS study. Cancer Causes & Control. 2007;18(10):1169-74.

Lindstrom S, Zheng SL, Wiklund F, Jonsson BA, Adami HO, Balter KA, et al. Systematic replication study of reported genetic associations in prostate cancer: Strong support for genetic variation in the androgen pathway. Prostate. 2006;66(16):1729-43.

Mhatre DR, Mahale SD, Khatkhatay MI, Achrekar SK, Desai SS, Jagtap DD, et al. The rs10993994 in the proximal MSMB promoter region is a functional polymorphism in Asian Indian subjects. Springerplus. 2015;4:380.

Vidal AC, Tucker C, Schildkraut JM, Richardson RM, McPhail M, Freedland SJ, et al. Novel associations of UDP-glucuronosyltransferase 2B gene variants with prostate cancer risk in a multiethnic study. BMC Cancer. 2013;13:556.

Park J, Chen L, Ratnashinge L, Sellers TA, Tanner JP, Lee JH, et al. Deletion polymorphism of UDP-glucuronosyltransferase 2B17 and risk of prostate cancer in African American and Caucasian men. Cancer Epidemiol Biomarkers Prev. 2006;15(8):1473-8.

Ghasemi S, Tavakoli A, Moghadam M, Zargar MA, Abbaspour M, Hatamnejadian N, et al. Risk of prostate cancer and thrombosis-related factor polymorphisms. Biomed Rep. 2014;2(1):53-6.

Tahmasbifard Z, Hasanzad M, Nafisi N. Study of Fas 1377 G˃ A polymorphism in breast cancer of Iranian patients. ISMJ. 2016;18(6):1132-9.

Gallagher CJ, Kadlubar FF, Muscat JE, Ambrosone CB, Lang NP, Lazarus P. The UGT2B17 gene deletion polymorphism and risk of prostate cancer: a case–control study in Caucasians. Cancer detection and prevention. 2007;31(4):310-5.

Safarinejad MR, Safarinejad S, Shafiei N, Safarinejad S. Estrogen receptors alpha (rs2234693 and rs9340799), and beta (rs4986938 and rs1256049) genes polymorphism in prostate cancer: evidence for association with risk and histopathological tumor characteristics in Iranian men. Mol Carcinog. 2012;51 Suppl 1:E104-17.

Peng B, Cao L, Ma X, Wang W, Wang D, Yu L. Meta-analysis of association between matrix metalloproteinases 2, 7 and 9 promoter polymorphisms and cancer risk. Mutagenesis. 2010;25(4):371-9.

Cunningham JM, Hebbring SJ, McDonnell SK, Cicek MS, Christensen GB, Wang L, et al. Evaluation of genetic variations in the androgen and estrogen metabolic pathways as risk factors for sporadic and familial prostate cancer. Cancer Epidemiology and Prevention Biomarkers. 2007;16(5):969-78.

Liu D, Guo H, Li Y, Xu X, Yang K, Bai Y. Association between polymorphisms in the promoter regions of matrix metalloproteinases (MMPs) and risk of cancer metastasis: a meta-analysis. PLoS One. 2012;7(2):e31251.

Cicek MS, Nock NL, Li L, Conti DV, Casey G, Witte JS. Relationship between methylenetetrahydrofolate reductase C677T and A1298C genotypes and haplotypes and prostate cancer risk and aggressiveness. Cancer Epidemiology and Prevention Biomarkers. 2004;13(8):1331-6.

Stevens VL, Rodriguez C, Pavluck AL, McCullough ML, Thun MJ, Calle EE. Folate nutrition and prostate cancer incidence in a large cohort of US men. American journal of epidemiology. 2006;163(11):989-96.

Berndt SI, Chatterjee N, Huang WY, Chanock SJ, Welch R, Crawford ED, et al. Variant in sex hormone-binding globulin gene and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2007;16(1):165-8.

Ebrahimi A, Colagar AH, Karimian M. Association of Human Methionine Synthase-A2756G Transition With Prostate Cancer: A Case-Control Study and in Silico Analysis. Acta Medica Iranica. 2017;55(5):297.

Severi G, Hayes VM, Padilla EJ, English DR, Southey MC, Sutherland RL, et al. The common variant rs1447295 on chromosome 8q24 and prostate cancer risk: results from an Australian population-based case-control study. Cancer Epidemiology and Prevention Biomarkers. 2007;16(3):610-2.

YAYKAŞLI KO, Kayikci MA, Yamak N, SOĞUKTAŞ H, DÜZENLİ S, Arslan AO, et al. Polymorphisms in MMP-2 and TIMP-2 in Turkish patients with prostate cancer. Turkish journal of medical sciences. 2014;44(5):839-43.

Medeiros R, Morais A, Vasconcelos A, Costa S, Pinto D, Oliveira J, et al. Linkage between polymorphisms in the prostate specific antigen ARE1 gene region, prostate cancer risk, and circulating tumor cells. Prostate. 2002;53(1):88-94.

Gansmo LB, Vatten L, Romundstad P, Hveem K, Ryan BM, Harris CC, et al. Associations between the MDM2 promoter P1 polymorphism del1518 (rs3730485) and incidence of cancer of the breast, lung, colon and prostate. Oncotarget. 2016;7(19):28637-46.

Mittal RD, George GP, Mishra J, Mittal T, Kapoor R. Role of functional polymorphisms of P53 and P73 genes with the risk of prostate cancer in a case-control study from Northern India. Arch Med Res. 2011;42(2):122-7.

Hernández J, Balic I, Johnson-Pais TL, Higgins BA, Torkko KC, Thompson IM, et al. Association between an eestrogen receptor alpha gene polymorphism and the risk of prostate cancer in black men. The Journal of urology. 2006;175(2):523-7.

Qu Y-Y, Zhou S-X, Zhang X, Zhao R, Gu C-Y, Chang K, et al. Functional variants of the 5-methyltetrahydrofolate-homocysteine methyltransferase gene significantly increase susceptibility to prostate cancer: Results from an ethnic Han Chinese population. Scientific reports. 2016;6:36264.

Weiner AS, Oskina NA, Lacarev AF, Petrova VD, Ganov DI, Boyarskih UA, et al. Role of polymorphic variants of MTR gene A2756G and SHMT1 gene C1420T in the development of prostatic cancer in residents of the Western Siberian Region of Russia. Bull Exp Biol Med. 2012;152(4):466-9.

Hasanzad M, Samzadeh M, Jamaldini SH, Haghdoost AA, Afshari M, Ziaei SAM. Association of angiotensin I converting enzyme polymorphism as genetic risk factor in benign prostatic hyperplasia and prostate cancer. Genetic testing and molecular biomarkers. 2012;16(7):770-4.

Mirzaei F, Khazaei M. Role of Nitric Oxide in Biological Systems: A Systematic Review. Journal of Mazandaran University of Medical Sciences. 2017;27(150):192-222.

van der Knaap R, Siemes C, Coebergh JW, van Duijn CM, Hofman A, Stricker BH. Renin-angiotensin system inhibitors, angiotensin I-converting enzyme gene insertion/deletion polymorphism, and cancer: the Rotterdam Study. Cancer. 2008;112(4):748-57.

Wang X, Wang S, Lin Y-w, Wu J, Chen H, Mao Y-q, et al. Angiotensin-converting enzyme insertion/deletion polymorphism and the risk of prostate cancer in the Han population of China. Medical Oncology. 2012;29(3):1964-71.

Sivoňová MK, Vilčková M, Kliment J, Mahmood S, Jurečeková J, Dušenková S, et al. Association of p53 and p21 polymorphisms with prostate cancer. Biomedical reports. 2015;3(5):707-14.

Meyer A, Coinac I, Bogdanova N, Dubrowinskaja N, Turmanov N, Haubold S, et al. Apoptosis gene polymorphisms and risk of prostate cancer: a hospital-based study of German patients treated with brachytherapy. Urol Oncol. 2013;31(1):74-81.

Lu X, Yamano Y, Takahashi H, Koda M, Fujiwara Y, Hisada A, et al. Associations between estrogen receptor genetic polymorphisms, smoking status, and prostate cancer risk: a case-control study in Japanese men. Environ Health Prev Med. 2015;20(5):332-7.

Li Q, Gu C, Zhu Y, Wang M, Yang Y, Wang J, et al. Two novel PRKCI polymorphisms and prostate cancer risk in an Eastern Chinese Han population. Mol Carcinog. 2015;54(8):632-41.

Jiang WG, Puntis M, Hallett MB. Molecular and cellular basis of cancer invasion and metastasis: implications for treatment. British journal of surgery. 1994;81(11):1576-90.

Eisenhardt A, Scherag A, Kempin M, Jockel KH, Rubben H. [Genotype of the GNB3 C825T polymorphism, A risk factor for the development and course of prostate cancer?]. Urologe A. 2011;50(9):1137-42.

Alizadeh‑Navaei R, Rafiei A, Abedian‑Kenari S, Asgarian‑Omran H, Valadan R, Hedayatizadeh‑Omran A. Comparison of leucine-rich repeat-containing G protein-coupled receptor 5 expression in different cancer and normal cell lines. Biomedical reports. 2016;5(1):130-2.

Shao P, Ding Q, Qin C, Wang M, Tang J, Zhu J, et al. Functional polymorphisms in cell death pathway genes FAS and FAS ligand and risk of prostate cancer in a Chinese population. Prostate. 2011;71(10):1122-30.

Fu C, Dong WQ, Wang A, Qiu G. The influence of ESR1 rs9340799 and ESR2 rs1256049 polymorphisms on prostate cancer risk. Tumour Biol. 2014;35(8):8319-28.

Dong Y, Zhu H, Sagnella GA, Carter ND, Cook DG, Cappuccio FP. Association between the C825T polymorphism of the G protein β3-subunit gene and hypertension in blacks. Hypertension. 1999;34(6):1193-6.

Mandal RK, Mittal RD. Are cell cycle and apoptosis genes associated with prostate cancer risk in North Indian population? Urol Oncol. 2012;30(5):555-61.

Bagheri F, Mesrian Tanha H, Mojtabavi Naeini M, Ghaedi K, Azadeh M. Tumor-promoting function of single nucleotide polymorphism rs1836724 (C3388T) alters multiple potential legitimate microRNA binding sites at the 3'-untranslated region of ErbB4 in breast cancer. Molecular medicine reports. 2016;13(5):4494-8.

Nicolaiew N, Cancel-Tassin G, Azzouzi AR, Le Grand B, Mangin P, Cormier L, et al. Association between estrogen and androgen receptor genes and prostate cancer risk. European journal of endocrinology. 2009;160(1):101-6.

Wang Q, Lv H, Lv W, Shi M, Zhang M, Luan M, et al. Genome-wide haplotype association study identifies BLM as a risk gene for prostate cancer in Chinese population. Tumor Biology. 2015;36(4):2703-7.

Hashemi M, Fazaeli A, Ghavami S, Eskandari-Nasab E, Arbabi F, Mashhadi MA, et al. Functional polymorphisms of FAS and FASL gene and risk of breast cancer - pilot study of 134 cases. PLoS One. 2013;8(1):e53075.

Chen Y-C, Kraft P, Bretsky P, Ketkar S, Hunter DJ, Albanes D, et al. Sequence variants of estrogen receptor β and risk of prostate cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium. Cancer Epidemiology and Prevention Biomarkers. 2007;16(10):1973-81.

Mandal RK, Mittal RD, editors. Are cell cycle and apoptosis genes associated with prostate cancer risk in North Indian population? Urologic Oncology: Seminars and Original Investigations; 2012: Elsevier.

Cai Q, Tang Y, Zhang M, Shang Z, Li G, Tian J, et al. TGFbeta1 Leu10Pro polymorphism contributes to the development of prostate cancer: evidence from a meta-analysis. Tumour Biol. 2014;35(1):667-73.

Xia L-Z, Yin Z-H, Ren Y-W, Shen L, Wu W, Li X-L, et al. The relationship between LAPTM4B polymorphisms and cancer risk in Chinese Han population: a meta-analysis. Springerplus. 2015;4(1):179.

Roshani D, Abdolahi A, Rahmati S. Association of p53 codon 72 Arg> Pro polymorphism and risk of cancer in Iranian population: A systematic review and meta-analysis. Medical Journal of The Islamic Republic of Iran (MJIRI). 2017;31(1):896-902.

Khorasani M, Teimoori-Toolabi L, Farivar TN, Asgari M, Abolhasani M, Shahrokh H, et al. Aberrant expression of miR-141 and nuclear receptor small heterodimer partner in clinical samples of prostate cancer. Cancer Biomark. 2018;22(1):19-28.

Filella X, Fernandez-Galan E, Fernandez Bonifacio R, Foj L. Emerging biomarkers in the diagnosis of prostate cancer. Pharmgenomics Pers Med. 2018;11:83-94.

Mansoori B, Mohammadi A, Shirjang S, Baradaran B. MicroRNAs in the Diagnosis and Treatment of Cancer. Immunol Invest. 2017;46(8):880-97.

Zhang WB, Zhang JH, Pan ZQ, Yang QS, Liu B. The MTHFR C677T polymorphism and prostate cancer risk: new findings from a meta-analysis of 7306 cases and 8062 controls. Asian Pac J Cancer Prev. 2012;13(6):2597-604.

Bai JL, Zheng MH, Xia X, Ter-Minassian M, Chen YP, Chen F. MTHFR C677T polymorphism contributes to prostate cancer risk among Caucasians: A meta-analysis of 3511 cases and 2762 controls. Eur J Cancer. 2009;45(8):1443-9.

Marchal C, Redondo M, Reyes-Engel A, Perea-Milla E, Gaitan MJ, Machuca J, et al. Association between polymorphisms of folate-metabolizing enzymes and risk of prostate cancer. Eur J Surg Oncol. 2008;34(7):805-10.

Cai D, Ning L, Pan C, Liu X, Bu R, Chen X, et al. Association of polymorphisms in folate metabolic genes and prostate cancer risk: a case-control study in a Chinese population. Journal of genetics. 2010;89(2):263-7.

Gholizadeh Z, Tavakkol-Afshari J, Nikpoor AR, Jalali SA, Jaafari MR. Enhanced immune response induced by P5 HER2/neu-derived peptide-pulsed dendritic cells as a preventive cancer vaccine. J Cell Mol Med. 2018;22(1):558-67.

Li H, Tai BC. RNASEL gene polymorphisms and the risk of prostate cancer: a meta-analysis. Clinical cancer research. 2006;12(19):5713-9.

Namazi S, Daneshian A, Mohammadianpanah M, Jafari P, Ardeshir-Rouhani-Fard S, Nasirabadi S. The impact of renin-angiotensin system, angiotensin capital I, Ukrainian converting enzyme (insertion/deletion), and angiotensin capital I, Ukrainiancapital I, Ukrainian type 1 receptor (A1166C) polymorphisms on breast cancer survival in Iran. Gene. 2013;532(1):125-31.

Xie Y, You C, Chen J. An updated meta-analysis on association between angiotensin I-converting enzyme gene insertion/deletion polymorphism and cancer risk. Tumour Biol. 2014;35(7):6567-79.

Moslemi MK, Lotfi F, Tahvildar SA. Evaluation of prostate cancer prevalence in Iranian male population with increased PSA level, a one center experience. Cancer management and research. 2011;3:227.

Yamada Y, Watanabe M, Murata M, Yamanaka M, Kubota Y, Ito H, et al. Impact of genetic polymorphisms of 17-hydroxylase cytochrome P-450 (CYP17) and steroid 5alpha-reductase type II (SRD5A2) genes on prostate-cancer risk among the Japanese population. Int J Cancer. 2001;92(5):683-6.

Latil AG, Azzouzi R, Cancel GS, Guillaume EC, Cochan-Priollet B, Berthon PL, et al. Prostate carcinoma risk and allelic variants of genes involved in androgen biosynthesis and metabolism pathways. Cancer. 2001;92(5):1130-7.

Peng T, Zhang L, Zhu L, Mi YY. MSMB gene rs10993994 polymorphism increases the risk of prostate cancer. Oncotarget. 2017;8(17):28494-501.

Fard ZT, Hasanzad M, Nowroozi MR. Association between the Asp327Asn Polymorphism of Sex Hormone-Binding Globulin Gene and Prostate Cancer. Research in Molecular Medicine. 2016;4(3):29-34.

Gupta L, Thakur H, Sobti RC, Seth A, Singh SK. Role of genetic polymorphism of estrogen receptor-alpha gene and risk of prostate cancer in north Indian population. Mol Cell Biochem. 2010;335(1-2):255-61.

Thellenberg-Karlsson C, Lindstrom S, Malmer B, Wiklund F, Augustsson-Balter K, Adami HO, et al. Estrogen receptor beta polymorphism is associated with prostate cancer risk. Clin Cancer Res. 2006;12(6):1936-41.

Paz YMC, Robles P, Salazar C, Leone PE, Garcia-Cardenas JM, Naranjo M, et al. Positive association of the androgen receptor CAG repeat length polymorphism with the risk of prostate cancer. Mol Med Rep. 2016;14(2):1791-8.

Karypidis AH, Olsson M, Andersson SO, Rane A, Ekstrom L. Deletion polymorphism of the UGT2B17 gene is associated with increased risk for prostate cancer and correlated to gene expression in the prostate. Pharmacogenomics J. 2008;8(2):147-51.

Nadeau G, Bellemare J, Audet-Walsh E, Flageole C, Huang SP, Bao BY, et al. Deletions of the androgen-metabolizing UGT2B genes have an effect on circulating steroid levels and biochemical recurrence after radical prostatectomy in localized prostate cancer. J Clin Endocrinol Metab. 2011;96(9):E1550-7.

Gsur A, Preyer M, Haidinger G, Schatzl G, Madersbacher S, Marberger M, et al. A polymorphism in the UDP-Glucuronosyltransferase 2B15 gene (D85Y) is not associated with prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 2002;11(5):497-8.

Shibahara T, Onishi T, Franco OE, Arima K, Nishikawa K, Yanagawa M, et al. A G/A polymorphism in the androgen response element 1 of prostate-specific antigen gene correlates with the response to androgen deprivation therapy in Japanese population. Anticancer Res. 2006;26(5a):3365-71.

Wang LZ, Sato K, Tsuchiya N, Yu JG, Ohyama C, Satoh S, et al. Polymorphisms in prostate-specific antigen (PSA) gene, risk of prostate cancer, and serum PSA levels in Japanese population. Cancer letters. 2003;202(1):53-9.

Kalay E, Ergen A, Narter F, Agachan B, Gormus U, Yigit N, et al. ARE-I polymorphism on PSA gene in prostate cancer patients of a Turkish population. Anticancer Res. 2009;29(4):1395-8.

Lai M-T, Chen R-H, Tsai F-J, Wan L, Chen W-C, editors. Glutathione S-transferase M1 gene but not insulin-like growth factor-2 gene or epidermal growth factor gene is associated with prostate cancer☆. Urologic Oncology: Seminars and Original Investigations; 2005: Elsevier.

Srivastava DS, Mandhani A, Mittal B, Mittal RD. Genetic polymorphism of glutathione S-transferase genes (GSTM1, GSTT1 and GSTP1) and susceptibility to prostate cancer in Northern India. BJU Int. 2005;95(1):170-3.

Shepard TF, Platz EA, Kantoff PW, Nelson WG, Isaacs WB, Freije D, et al. No association between the I105V polymorphism of the glutathione S-transferase P1 gene (GSTP1) and prostate cancer risk: a prospective study. Cancer Epidemiol Biomarkers Prev. 2000;9(11):1267-8.

Mansoori M, Golalipour M, Alizadeh S, Jahangirerad A, Khandozi SR, Fakharai H, et al. Genetic variation in the ABCB1 gene may lead to mRNA level change: Application to gastric cancer cases. Asian Pacific Journal of Cancer Prevention. 2016;16(18):8467-71.

Munoz M, Henderson M, Haber M, Norris M. Role of the MRP1/ABCC1 multidrug transporter protein in cancer. IUBMB Life. 2007;59(12):752-7.

Babamahmoodi F, Kamalabadi Farahani S, Ramezani D, Ahangar N. Evaluation of Drug-induced Liver Injury and its Relationship with NAT2 Gene Polymorphisms in Tuberculosis Patients. Journal of Mazandaran University of Medical Sciences. 2017;27(151):52-61.

Srivastava DS, Mittal RD. Genetic polymorphism of the N-acetyltransferase 2 gene, and susceptibility to prostate cancer: a pilot study in north Indian population. BMC urology. 2005;5(1):12.

Suzuki K, Nakazato H, Matsui H, Koike H, Okugi H, Kashiwagi B, et al. Genetic polymorphisms of estrogen receptor alpha, CYP19, catechol‐O‐methyltransferase are associated with familial prostate carcinoma risk in a Japanese population. Cancer. 2003;98(7):1411-6.

Saadat S, Yousefifard M, Asady H, Moghadas Jafari A, Fayaz M, Hosseini M. The Most Important Causes of Death in Iranian Population; a Retrospective Cohort Study. Emerg (Tehran). 2015;3(1):16-21.

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-86.

Pakzad R, Rafiemanesh H, Ghoncheh M, Sarmad A, Salehiniya H, Hosseini S, et al. Prostate Cancer in Iran: Trends in Incidence and Morphological and Epidemiological Characteristics. Asian Pac J Cancer Prev. 2016;17(2):839-43.

Keyghobadi N, Rafiemanesh H, Mohammadian-Hafshejani A, Enayatrad M, Salehiniya H. Epidemiology and trend of cancers in the province of Kerman: southeast of Iran. Asian Pac J Cancer Prev. 2015;16(4):1409-13.

Hassanipour S, Fathalipour M, Salehiniya H. The Incidence of Prostate Cancer in Iran: A Systematic Review and Meta-analysis. Prostate International. 2017.

Hassanipour-Azgomi S, Mohammadian-Hafshejani A, Ghoncheh M, Towhidi F, Jamehshorani S, Salehiniya H. Incidence and mortality of prostate cancer and their relationship with the Human Development Index worldwide. Prostate international. 2016;4(3):118-24.

Azgomi SH, Mohammadian-Hafshejani A, Ghoncheh M, Towhidi F, Jamehshorani S, Salehiniya H. The incidence and mortality of prostate cancer and their relationship with human development index in the world. 2016.

Zhang P, Xia JH, Zhu J, Gao P, Tian YJ, Du M, et al. High-throughput screening of prostate cancer risk loci by single nucleotide polymorphisms sequencing. Nat Commun. 2018;9(1):2022.

Pouresmaeili F, Hosseini SJ, Farzaneh F, Karimpour A, Azargashb E, Yaghoobi M, et al. Evaluation of environmental risk factors for prostate cancer in a population of Iranian patients. Asian Pacific journal of cancer prevention : APJCP. 2014;15(24):10603-5.

Karbasforooshan H, Roohbakhsh A, Karimi G. SIRT1 and microRNAs: The role in breast, lung and prostate cancers. Exp Cell Res. 2018;367(1):1-6.


Refbacks

  • There are currently no refbacks.