Integrons and antimicrobial resistance in bacteria: A systematic review

Aref Shariati, Fattaneh Sabzehali, Mehdi Goudarzi, Hadi Azimi

Abstract


118

Resistance to antimicrobial agents is on the rise  and this phenomenon not only leads to an increase in economic burden but may also cause serious therapeutic problems. Nowadays, it is known that horizontal transfer of resistance genes is a major cause for spreading antibiotic resistance genes in microbes. The previous studies have manifested that integrons play a significant role in horizontal transfer of antibiotic resistance. Integrons are in fact natural cloning and expression systems which have the ability to spread multi drug resistance (MDR) in bacteria. They are normally motionless but can be transferred through mobile genetic elements, for example plasmids and transposons. Integrons carry divergent gene cassettes that are rearranged under antibiotic selective pressure. It is based on the sequence of the integrase gene that various classes of integrons are known. Class 1 integron is the most prevalent type among bacteria. This review highlights the need for continuous surveillance to understand the dissemination of integron and multidrug resistance among different bacteria.


Keywords


Integrons, Drug resistance, Bacteria

Full Text:

PDF

68

References


Johansson C. Mechanisms and DNA specificity in site-specific recombination of integron cassettes: Acta Universitatis Upsaliensis; 2007.

Smets BF, Barkay T. Horizontal gene transfer: perspectives at a crossroads of scientific disciplines. Nat Rev Microbiol. 2005;3(9):675-8.

Shi L, Zheng M, Xiao Z, Asakura M, Su J, Li L, et al. Unnoticed spread of class 1 integrons in gram‐positive clinical strains isolated in Guangzhou, China. Microbiol Immun. 2006;50(6):463-7.

Rowe-Magnus DA, Mazel D. The role of integrons in antibiotic resistance gene capture. Int J Med Microbiol. 2002;292(2):115-25.

Mazel D, Dychinco B, Webb VA, Davies J. A distinctive class of integron in the Vibrio cholerae genome. Science. 1998;280(5363):605-8.

Clark CA, Purins L, Kaewrakon P, Manning PA. VCR repetitive sequence elements in the Vibrio cholerae chromosome constitute a mega-integron. 1997.

Stokes HW, Holmes AJ, Nield BS, Holley MP, Nevalainen KH, Mabbutt BC, et al. Gene cassette PCR: sequence-independent recovery of entire genes from environmental DNA. Appl Environ Microbiol. 2001;67(11):5240-6.

Holmes AJ, Gillings MR, Nield BS, Mabbutt BC, Nevalainen K, Stokes H. The gene cassette metagenome is a basic resource for bacterial genome evolution. Environ Microbiol. 2003;5(5):383-94.

Stokes H, O'gorman D, Recchia GD, Parsekhian M, Hall RM. Structure and function of 59‐base element recombination sites associated with mobile gene cassettes. Mol Microbiol. 1997;26(4):731-45.

Loot C, Bikard D, Rachlin A, Mazel D. Cellular pathways controlling integron cassette site folding. EMBO J. 2010;29(15):2623-34.

Cambray G, Guerout A-M, Mazel D. Integrons. Annu Rev Genet. 2010;44:141-66.

Partridge SR, Recchia GD, Scaramuzzi C, Collis CM, Stokes H, Hall RM. Definition of the attI1 site of class 1 integrons. Microbiol. 2000;146(11):2855-64.

Collis CM, Recchia GD, Kim M-J, Stokes HW, Hall RM. Efficiency of recombination reactions catalyzed by class 1 integron integrase IntI1. J Bacteriol. 2001;183(8):2535-42.

Collis CM, Kim MJ, Stokes H, Hall RM. Binding of the purified integron DNA integrase IntI1 to integron‐and cassette‐associated recombination sites. Mol Microbiol. 1998;29(2):477-90.

Loot C, Ducos-Galand M, Escudero JA, Bouvier M, Mazel D. Replicative resolution of integron cassette insertion. Nucleic Acids Res. 2012;40(17):8361-70.

Collis CM, Hall RM. Expression of antibiotic resistance genes in the integrated cassettes of integrons. Antimicrob Agents Chemother. 1995;39(1):155-62.

Michael CA, Labbate M. Gene cassette transcription in a large integron-associated array. BMC Genet. 2010;11(1):82.

Bissonnette L, Champetier S, Buisson J, Roy P. Characterization of the nonenzymatic chloramphenicol resistance (cmlA) gene of the In4 integron of Tn1696: similarity of the product to transmembrane transport proteins. J Bacteriol. 1991;173(14):4493-502.

Szekeres S, Dauti M, Wilde C, Mazel D, Rowe‐Magnus DA. Chromosomal toxin–antitoxin loci can diminish large‐scale genome reductions in the absence of selection. Mol Microbiol. 2007;63(6):1588-605.

Abbott SL, Janda JM. Severe gastroenteritis associated with Vibrio hollisae infection: report of two cases and review. Clin Infect Dis. 1994;18(3):310-2.

Smith AB, Siebeling RJ. Identification of genetic loci required for capsular expression in Vibrio vulnificus. Infect Immun . 2003;71(3):1091-7.

Rowe-Magnus DA, Guerout A-M, Ploncard P, Dychinco B, Davies J, Mazel D. The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons. Proc Natl Acad Sci USA. 2001;98(2):652-7.

Rowe-Magnus DA, Guerout A-M, Biskri L, Bouige P, Mazel D. Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae. Genome Res. 2003;13(3):428-42.

Gillings MR, Holley MP, Stokes H. Evidence for dynamic exchange of qac gene cassettes between class 1 integrons and other integrons in freshwater biofilms. FEMS Microbiol Lett. 2009;296(2):282-8.

Cambray G, Sanchez-Alberola N, Campoy S, Guerin É, Da Re S, González-Zorn B, et al. Prevalence of SOS-mediated control of integron integrase expression as an adaptive trait of chromosomal and mobile integrons. Mobile DNA. 2011;2(1):6.

DeLappe N, O'Halloran F, Fanning S, Corbett-Feeney G, Cheasty T, Cormican M. Antimicrobial resistance and genetic diversity of Shigella sonnei isolates from western Ireland, an area of low incidence of infection. J Clin Microbiol. 2003;41(5):1919-24.

Melano R, Petroni A, Garutti A, Saka HA, Mange L, Pasterán F, et al. New carbenicillin-hydrolyzing β-lactamase (CARB-7) from Vibrio cholerae non-O1, non-O139 strains encoded by the VCR region of the V. cholerae genome. Antimicrob Agents Chemother. 2002;46(7):2162-8.

Partridge SR, Tsafnat G, Coiera E, Iredell JR. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev. 2009;33(4):757-84.

Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev. 2011;35(5):790-819.

Xu Y, Luo Q-q, Zhou M-g. Identification and characterization of integron-mediated antibiotic resistance in the phytopathogen Xanthomonas oryzae pv. oryzae. PloS one. 2013;8(2):e55962.

Nandi S, Maurer JJ, Hofacre C, Summers AO. Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Natl Acad Sci USA. 2004;101(18):7118-22.

White PA, McIver CJ, Rawlinson WD. Integrons and Gene Cassettes in theEnterobacteriaceae. Antimicrob Agents Chemother. 2001;45(9):2658-61.

Ramírez MS, Quiroga C, Centrón D. Novel rearrangement of a class 2 integron in two non-epidemiologically related isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 2005;49(12):5179-81.

Ramírez MS, Piñeiro S, Centrón D, Group AIS. Novel insights about class 2 integrons from experimental and genomic epidemiology. Antimicrob Agents Chemother. 2010;54(2):699-706.

Correia M, Boavida F, Grosso F, Salgado M, Lito L, Cristino JM, et al. Molecular characterization of a new class 3 integron in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2003;47(9):2838-43.

Collis CM, Kim M-J, Partridge SR, Stokes H, Hall RM. Characterization of the class 3 integron and the site-specific recombination system it determines. J Bacteriol. 2002;184(11):3017-26.

Fluit A, Schmitz FJ. Resistance integrons and super‐integrons. Clin Microbiol Infect. 2004;10(4):272-88.

Xu Z, Li L, Shi L, Shirtliff ME. Class 1 integron in staphylococci. Mol Biol Rep. 2011;38(8):5261-79.

Clark NC, Olsvik Ø, Swenson JM, Spiegel CA, Tenover FC. Detection of a streptomycin/spectinomycin adenylyltransferase gene (aadA) in Enterococcus faecalis. Antimicrob Agents Chemother. 1999;43(1):157-60.

Kholodii GY, Mindlin S, Bass I, Yurieva O, Minakhina S, Nikiforov V. Four genes, two ends, and a res region are involved in transposition of Tn5053: a paradigm for a novel family of transposons carrying either a mer operon or an integron. Mol Microbiol. 1995;17(6):1189-200.

Yu G, Li Y, Liu X, Zhao X, Li Y. Role of integrons in antimicrobial resistance: A review. Afr J Microbiol Res. 2013;7(15):1301-10.

Mazel D. Integrons: agents of bacterial evolution. Nat Rev Microbiol. 2006;4(8):608-20.

Fluit A, Schmitz F. Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur J Clin Microbiol Infect Dis. 1999;18(11):761-70.

Zhao S, White DG, Ge B, Ayers S, Friedman S, English L, et al. Identification and characterization of integron-mediated antibiotic resistance among Shiga toxin-producing Escherichia coli isolates. Appl Environ Microbiol. 2001;67(4):1558-64.

Dziejman M, Serruto D, Tam VC, Sturtevant D, Diraphat P, Faruque SM, et al. Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Natl Acad Sci USA. 2005;102(9):3465-70.

Morabito S, Tozzoli R, Caprioli A, Karch H, Carattoli A. Detection and characterization of class 1 integrons in enterohemorrhagic Escherichia coli. Microb Drug Resist. 2002;8(2):85-91.

Nešvera J, Hochmannová J, Pátek M. An integron of class 1 is present on the plasmid pCG4 from gram-positive bacterium Corynebacterium glutamicum. FEMS Microbiol Lett. 1998;169(2):391-5.

Girlich D, Poirel L, Leelaporn A, Karim A, Tribuddharat C, Fennewald M, et al. Molecular epidemiology of the integron-located VEB-1 extended-spectrum β-lactamase in nosocomial enterobacterial isolates in Bangkok, Thailand. J Clin Microbiol. 2001;39(1):175-82.

Seward RJ, Towner KJ. Detection of integrons in worldwide nosocomial isolates of Acinetobacter spp. Clin Microbiol Infect. 1999;5(6):308-18.

Xu Z, Li L, Shirtliff ME, Peters BM, Peng Y, Alam MJ, et al. First report of class 2 integron in clinical Enterococcus faecalis and class 1 integron in Enterococcus faecium in South China. Diagn Microbiol Infect Dis. 2010;68(3):315-7.

You R, Gui Z, Xu Z, Shirtliff ME, Yu G, Zhao X, et al. Methicillin-resistance Staphylococcus aureus detection by an improved rapid polymerase chain reaction (PCR) assay. Afr J Microbiol Res. 2012;6(43):7131-3.

Gillings MR. Integrons: past, present, and future. Microbiol Mol Biol Rev. 2014;78(2):257-77.

Oh JY, Kim KS, Jeong YW, Cho JW, Park JC, Lee JC. Epidemiological typing and prevalence of integrons in multiresistant Acinetobacter strains. Apmis. 2002;110(3):247-52.

Crespo O, Catalano M, Piñeiro S, Matteo M, Leanza A, Centrón D. Tn7 distribution in Helicobacter pylori: a selective paradox. Int J Antimicrob Agents. 2005;25(4):341-4.

McIver CJ, White PA, Jones LA, Karagiannis T, Harkness J, Marriott D, et al. Epidemic strains of Shigella sonnei biotype g carrying integrons. J Clin Microbiol. 2002;40(4):1538-40.

Ahmed AM, Nakano H, Shimamoto T. Molecular characterization of integrons in non-typhoid Salmonella serovars isolated in Japan: description of an unusual class 2 integron. J Antimicrob Chemother. 2005;55(3):371-4.

Xu H, Broersma K, Miao V, Davies J. Class 1 and class 2 integrons in multidrug-resistant gram-negative bacteria isolated from the Salmon River, British Columbia. Can J Microbiol. 2011;57(6):460-7.

Kadlec K, Schwarz S. Analysis and distribution of class 1 and class 2 integrons and associated gene cassettes among Escherichia coli isolates from swine, horses, cats and dogs collected in the BfT-GermVet monitoring study. J Antimicrob Chemother. 2008;62(3):469-73.

Arakawa Y, Murakami M, Suzuki K, Ito H, Wacharotayankun R, Ohsuka S, et al. A novel integron-like element carrying the metallo-beta-lactamase gene blaIMP. Antimicrob Agents Chemother. 1995;39(7):1612-5.

Xu H, Davies J, Miao V. Molecular characterization of class 3 integrons from Delftia spp. J Bacteriol. 2007;189(17):6276-83.

Shibata N, Doi Y, Yamane K, Yagi T, Kurokawa H, Shibayama K, et al. PCR typing of genetic determinants for metallo-β-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol. 2003;41(12):5407-13.

Fallah F, Karimi A, Goudarzi M, Shiva F, Navidinia M, Hadipour Jahromi M, Sajadi Nia RS. Determination of Integron Frequency by a Polymerase Chain Reaction–Restriction Fragment Length Polymorphism Method in Multidrug-Resistant Escherichia coli, Which Causes Urinary Tract Infections. Microb Drug Resist. 2012 Dec 1;18(6):546-9.

Goudarzi M, Seyedjavadi SS, Fazeli M, Roshani M, Azad M, Heidary M, Navidinia M, Goudarzi H. Identification of a Novel Cassette Array in Integronbearing Helicobacter Pylori Strains Isolated from Iranian Patients. Asian Pac J Cancer Prev. 2016;17(7):3309-15.

Karimisup A, Rahbar M, Fallahsup F, Navidiniasup M, Malekansup MA. Detection of integron elements and gene groups encoding ESBLs and their prevalence in Escherichia coli and Klebsiella isolated from urine samples by PCR method. Afr J Microbiol Re. 2012 Feb 29;6(8):1806-9.

Navidinia M, Peerayeh SN, Fallah F, Bakhshi B. Phylogenetic groups and pathogenicity island markers in Escherichia coli isolated from children. Jundishapur J Microbiol. 2013;6(10).




DOI: https://doi.org/10.22037/jps.v9i2.18726

Refbacks

  • There are currently no refbacks.


"Journal of Paramdedical Sciences", is a publication of "School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences" and "Iranian Society of Medical Proteomics".

"Journal of Paramdedical Sciences" is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

EISSN: 2008-4978

PISSN: 2008-496X