An overview of cognitive aspects of β-carbolines

Pooneh Heshmati1*, Mohammad Nasehi2, Mohammad Reza Zarrindast1

1Institute for Cognitive Science Studies (ICSS), Tehran, Iran
2Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Garmsar Branch, Garmsar, Iran

*Corresponding Author: email address: Heshmatimd@yahoo.com (P. Heshmati)

ABSTRACT

Mind-altering drugs, especially plants, have fascinated human and always occupied man’s attention. Among the plants used by humans, those able to alter the mind and the mood have drawn special consideration. Actually, due to their amazing effects, these drugs, have occupied much of the researchers’ time and efforts towards attempts to understand their mechanism, and, hence, to understand human thoughts, behavior, cognitive aspects, sensations and etc. The fact is plants could have beneficial properties to treat mental disease and have some effects on cognitive function. Now we know that plants by originating directly from nature are not less toxic than synthetic drugs. The manner of poisoning with plants can be divided into unintentional or intentional ingestion of plant material and substance abuse. This review article deals with β-carbolines, which has effect on CNS.

Keywords: Harmane; Dopamine; Cognitive

INTRODUCTION

β-carbolines is a part of the indole alkaloids group, and it’s pyridine ring is fused to an indole skeleton. The structure of β-carbolines similar to tryptamine[1]. A number of tremorogenic β-carboline alkaloids for example harmane (HA; 1-methyl-β-carboline), 9H-pyrido [3, 4-β] indole (norharmane) and Harmine (7-methoxy-1-methyl-9H-pyrido[3, 4-b]indole) are present in the food chain (figure 1). They have been found in plant-derived beverages, common plant-derived foodstuffs (rice, wheat, corn, mushrooms, barley, soybeans, vinegar and grapes), and plant-derived inhaled substances such as tobacco[2]. The β-carbolines harmane, norharmane and harmine, first isolated in Peganum harmala, and related alkaloids are distributed in medicinal plants and exist in mammalian brain tissue, liver, blood plasma, heart and kidney. Since, high plasma levels of these compounds can be found in substance abusers and in some diseases such as Parkinson, they are assumed to have a role in the pathophysiology of different types of CNS disorders. β-carbolines not only have some effects on CNS, but also on some other organs in the humans. So they exhibit variety of psychopharmacological, biochemical, and behavioral effects in animals and humans. For example, harmine (7-methoxy-1-methyl-9H-pyrido[3, 4-b]indole) which is a tricyclic β-carboline alkaloid, has many traditional and pharmacological uses such as antimicrobial, anti-HIV and antiparasitic effects.

Figure 1. Schematic representation of the chemical structure of 9H-pyrido [3, 4-β] indole (norharmane), HA; 1-methyl-β-carboline (harmane), and 7-methoxy-1-methyl-9H-pyrido[3, 4-b]indole (harmine)
Behavioral effects of harmine in rodents have been investigated. Effect of harmine on animal behavior was assessed in the forced swimming and open-field tests, and the results showed harmine reduced immobility time and increased climbing and swimming time, compared to saline group. Harmine showed beneficial effects on naloxone-precipitated morphine withdrawal syndrome in morphine-dependent rats. Harmine stimulates the central nervous system by inhibiting the metabolism of amine neurotransmitters. Harmine stimulates dopamine release, proving its usage in the treatment of brain disorders.

Neurotransmitters are endogenous chemicals that transmit signals from a neuron to a target cell across a synapse, such as Dopamine, GABA and Serotonin. The β-carbolines have been shown to bind to a variety of different targets including monoamine oxidase A and B (MAOA and MAOB), benzodiazepine, imidazoline, dopamine, histamine (under publication) and 5-hydroxytryptamine (5-HT) receptors. Following monoamine oxidase (MAO) A or B inhibition β-carbolines increase the level of monoamines. Also they increase the extracellular dopamine, norepinephrine, and 5-HT levels in different brain regions via inhibition of monoamine reuptake. As described above biochemical studies have revealed β-carbolines' several actions, for instance binding to benzodiazepine and opiate receptors inhibition of MAO, competitive inhibition of 5-HT uptake, general inhibition of Na+ dependent transports and action on dopamine receptors, which may participate in a changeable degree in the actions of different types of β-carbolines.

Effect on Seizures

Benzodiazepines and GABA_A receptor agonists have a well-known anticonvulsive effect and are routinely used for antiepileptic treatment, while inverse agonist β-carbolines are convulsant or proconvulsant agents. β-carbolines act on the benzodiazepine site of the GABA_A receptor. Some of them, such as harmaline have a systematic agonist action, something like the action of benzodiazepine agonists. The others have an inverse agonist action. These inverse agonist β-carbolines are important for analyzing the involvement of the GABA_A receptor complex in many behavioral conditions. For example, methyl-6, 7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) is a powerful convulsant. Others, called “proconvulsants”, produce no spontaneous convulsive effect, but potentiate seizures induced by other compounds. This effect has been studied with methyl β-carboline -3-carboxylate (β-CCM), which is convulsive or proconvulsive in rats and mice. The effects can be compensated by an antagonist, such as flumazenil. On the other hand, in some studies, flumazenil at very low doses has been shown to potentiate the anticonvulsive effect of benzodiazepines, which means that it has a partial agonist effect. Between the different inverse agonist β-carbolines, β-CCM is usually used for experimental research.

Effect on Anxiety

Anxiety defined as the response of a subject to a fulminating that may impair the homeostasis. This can include two parameters: physiological (increase in blood pressure, heart rate, ...) or behavioral (inhibition of ongoing behaviors, scanning, avoidance of the source of danger, ...). Benzodiazepines have anxiolytic effects in both humans and animals. Benzodiazepines have anxiolytic effects in humans and animals. Human studies found evidence of an anxiogenic effect of some β-carbolines in healthy volunteers. Also animal studies demonstrated that some β-carbolines have an anxiogenic effect on rodents. In the benzodiazepine site of the GABA_A receptors as inverse agonists; some possess anxiogenic character and others act as anxiolytic, depending on the dose. In comparison, it should be mentioned that convulsants not acting on the benzodiazepine site, e.g., picrotoxin, have clear anxiogenic effects on mice, at doses lower than convulsive doses. So we can understand that the efficient dose for producing anxiogenic effects is lower than the dose required for inducing convulsions.

Effect on depression

As we mentioned above β-carbolines bind to other neurotransmitter receptors in the brain,
including 5-hydroxytryptamine (5-HT), dopamine receptors also imipramine/citalopram recognition site [18]. Also we know that these alkaloids increase the extracellular norepinephrine, dopamine and 5-HT levels in several brain regions with inhibitory effect on monoamine reuptake systems. These increase the levels of monoamines after monoamine oxidase (MAO) A or B inhibition. These results suggest a possible role of β-carbolines in control of depression. The β-carbolines harmane, norharmane and harmane which are present in the brain, may be synthesized by condensation reaction of tryptamine with acetaldehyde or pyruvic acid [19]. Behavioral effectsof β-carbolines and benzodiazepines are antagonized by flumazenil [20]. One study shows that, flumazenil at a dose ineffective per se on the duration of immobility, antagonized the antidepressant-like effects of β-carbolines. It provides some evidence that β-carbolines induce an antidepressant-like effect through stimulation of the benzodiazepine receptor in an inverse way [21]. β-carbolines also display high affinity for I2-imidazoline receptors [22]. These receptors have been implicated in depression [23]. In depression, the levels of I2-imidazoline binding sites are changed. The antidepressant-like effects of the I2-ligands have been reported in the animal forced swim test. In conclusion, β-carbolines harmane, norharmane and harmane have an antidepressant-like effect in the forced swim test. This effect seems to be induced by an inverse-agonistic mechanism located in the benzodiazepine receptors.

Effect on Memory

Memory is the process in which information is encoded, stored, and retrieved. Encoding allows information to reach our senses in the forms of chemical and physical stimuli. Storage is maintaining the information over periods of time. Finally the third process is the retrieval of the information that has been stored. Benzodiazepines are often said to have “amnesic” effects in humans. It has been reported that benzodiazepines induced marked anterograde amnesia after injection [24]. Since then, several amnesic effects of benzodiazepines have been described in humans and animals. However, in different learning situations [25-27] [28, 29] flumazenil has effects similar to the effects of an inverse agonist.

β-carbolines, such as DMCM, have been shown to modify learning abilities in animals [30, 31]. “Paradoxical” memory-enhancing effects of β-carbolines have also been reported in some cases. Some researchers [26, 32] found that direct intracerebral injection of β -CCM (at extremely low doses: 3 μg/0.5 μl) injected into the nucleus basalis magnocellularis of the rat enhanced recognition in a two-trial recognition task. The nucleus basalis magnocellular is of the rat is the equivalent of the nucleus basalis of Meynert in humans, which has an important role in amnesic impairments observed in Alzheimer-type senile dementia [33]. The role of GABAergic neurons in this region, being involved in memory processes, offers new evidence for the designation of GABA in Alzheimer’s disease.

Benzodiazepines and β -CCM appear to act specifically on the acquisition (learning) phase of memory processing. There should be a physiological link between β -CCM–induced convulsions, β -CCM–induced anxious behavior, and β -CCM–induced learning processes, as β -CCM, is convulsant at high doses, anxiogenic at moderate doses, and learningenhancing at very low doses. Therefore a link could be required between learning and mild anxiety, indicating that the “normal” state of the brain for optimal learning would be a state of mild anxiety, and when anxiety levels are too high, there would be pathological problem, such as seizure [34]. The limbic system, has been shown to be involved in seizure [35], anxiety [36], and memory processing [37]. In fact, these three processes have been associated with GABA receptors subunits. As mentioned before, β-carbolines can act on CNS binding sites [38], for example 5HT2 and 5HT1A receptors, imidazoline receptors, and NMDA receptors. β-carbolines inhibit enzymes such as monoamine oxidase A and, and inducible nitric oxide synthase (NOS). β-carbolines are related to decrease level of iNOS protein and NOS promoter activities in a concentration-dependent manner [39]. Nitric oxide (NO) has an important role, as a second messenger, in the central and peripheral nervous systems. It takes part in specific forms of long-term potentiation and expression [40].
Table 1. Some neurological effects of β-carbolines

<table>
<thead>
<tr>
<th>Table 1. Some neurological effects of β-carbolines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seizures</td>
</tr>
<tr>
<td>Anxiety</td>
</tr>
<tr>
<td>Depression</td>
</tr>
<tr>
<td>Memory</td>
</tr>
</tbody>
</table>

NO is involved in central effects of some drugs like nicotine, morphine, cannabinoid, ethanol, lithium, and histamine. Furthermore, the hippocampus, which has a main role in learning and memory, is obligatory to mediate the expression of passive avoidance learning. Also several studies indicated that NO and harmaline[41] are involved in hippocampus-dependent learning and memory. Some neurological effects of β-carbolines are tabulated in Table 1.

REFERENCES

3. Glennon, RA; Dukat, M; Grella, B; Hong, S; Costantino, L; Teitler, M; Smith, C et al. Binding of beta-carbolines and related agents at serotonin (5-HT(2) and 5-HT(1A)), dopamine (D(2)) and benzodiazepine receptors. Drug Alcohol Depend. 2000; 60(2): 121-32.

4. Rommelspacher, H; Nanz, C; Borbe, HO; Fehske, KJ; Muller, WE; Wollert, U. 1-Methyl-beta-carboline (harmaline), a potent endogenous inhibitor of benzodiazepine receptor binding. Naunyn Schmiedebergs Arch Pharmacol. 1980; 314(1): 97-100.

9. Corda, MG; Giorgi, O; Longoni, B; Biggio, G. Ro 15-4513, a partial inverse agonist for benzodiazepine recognition sites, has proconflict

CONCLUSION

In recent years, attention has been paid to the health promoting activity of plant foods and their active components. Although essential improvements in the quality control have been made, we should be more careful about the optimization of the extraction and separation procedures of these plants. Thus, further studies are needed to explore the hidden potential of β-carbolines in treating various diseases.
11. Prado de Carvalho, L; Grecksch, G; Cavalcante, EA; Dodd, RH; Chapouthier, G; Rossier, J. Characterization of convulsions induced by methyl beta-carbolione-3-carboxylate in mice. Eur J Pharmacol. 1984; 103(3-4): 287-93.
23. Piletz, J; Zhu, H; Ordway, G; Stockmeier, C; Dilly, G; Reis, D; Halaris, A. Imidazoline receptor proteins are decreased in the hippocampus of individuals with major depression. Biol Psychiatry. 2000; 48(9): 910-9.
31. Savic, MM; Obradovic, DI; Ugresic, ND; Cook, JM; Yin, W; Bokonjic, DR. Bidirectional effects of benzodiazepine binding site ligands in the passive avoidance task: differential antagonism by flumazenil and beta-CCM. Behav Brain Res. 2005; 158(2): 293-300.
38. Nasehi, M; Piri, M; Nouri, M; Farzin, D; Nayer-Nouri, T; Zarrindast, MR. Involvement of dopamine D1/D2 receptors on harmane-induced amnesia in the step-down passive avoidance test. Eur J Pharmacol. 634(1-3): 77-83.
40. Hawkins, RD; Son, H; Arancio, O. Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. Prog Brain Res. 1998; 118: 155-72.
41. Nasehi, M; Sharifi, S; Zarrindast, MR. Involvement of the cholinergic system of CA1 on harmane-induced amnesia in the step-down passive avoidance test. J Psychopharmacol. 26(8): 1151-61.