Original Article:

Antibacterial and anticancer activity of a bioflavonoid fractionated from *Allium Ascalonicum*

Mansour Amin¹,⁴, Asie Varnaseri Mohammadi², Mohsen Heidary³, Saeed Khoshnood⁴,*

¹Health Research Institute, Infectious and Tropical Diseases Research Center
²Department of Biology, Faculty of Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
³Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
⁴Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

*Corresponding author: Saeed.khoshnood22@gmail.com (S. Khoshnood)

ABSTRACT

Allium ascalonicum is a part of the diet of many populations of the world due to their long-held beliefs. *A. ascalonicum* extracts have been reported have antibacterial properties and prevent cancer cell proliferation. This study was conducted for the purpose of evaluating the anticancer and antibacterial activity of a flavonoid fraction isolated from *A. ascalonicum* bulbs. The HeLa and HUVEC cells were used as target cell line and some gram negative and positive bacteria were also targeted for antimicrobial activity. The *A. ascalonicum* plant was collected from the Zagros Mountains in the north of Dezful city- Iran, in September 2016 and confirmed by School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. The water extract of bulbs of this plant was extracted and the flavonoid fraction was isolated from aqueous extract by ethyl acetate. The antibacterial and anticancer effects of isolated falavonoid were determined using MIC and MTT respectively. The best antibacterial effect of falvovoid extracted from *A. ascalonicum* was found against *C. diphtheria*. Furthermore, gentamicin resistant *P. aeruginosa* was the most resistant pathogenic bacterium. The MTT method showed that this fraction had a concentration-dependent anti-proliferative activity on HeLa cell lines and there was no cytotoxic effect against HUVEC cells. The inhibitory concentration 50% (IC50) values of the *A. ascalonicum* extract for Hela cell was 3 mg/mL but the treatment of HUVECs with the *A. ascalonicum* showed no considerable effect. The flavonoid fraction of *A. ascalonicum* bulbs had remarkable antibacterial and anticancer properties. Therefore, it could be used as an antibacterial and anticancer agent for control of cancers and infectious diseases.

Keywords: Anticancer; *Allium ascalonicum*; *Allium sativum*; flavonoid

INTRODUCTION

Allium plants are members of the *Liliaceae* family and consist of more than seven hundred species [1]. However, only three species, including *Allium ascalonicum* (Shallot), *Allium sativum* (garlic) and *Allium cepa* (onion) are well-known remedies in the prevention and treatment of diseases [2,3]. Traditional medicine has a very honorable past in Iran and medicinal plants play a key role in this country. Nowadays, traditional herbal medicine is still widely used in all cities and villages of Iran and there are “Attari stores”, which sell herbals drugs [4-6]. Infectious diseases and cancers are the most common causes of death in many populations of the world and mankind have been grappling with this problem from the beginning. The adverse side effects and
resistance of synthetic antimicrobial and anticancer drugs have increased the necessity for the discovery of novel natural compounds. Recently, the use of herbal medicines has been considered for treatment of infectious diseases and cancers due to their fewer side effects, compression to chemical medicines [7-9]. A. ascalonicum is abundant in the Razavi-Khorasan and Lorestan provinces of Iran [1-7]. This herbal medicine has many potential benefits including antifungal and antibacterial properties, antioxidant activity, beneficial hematological effects and has been used for the treatment of rheumatism, kidney stones and decrease blood pressure [10,11]. A. ascalonicum plant contains saponin, sapogenine, ajone and flavonoid extracts. Several studies have been conducted on the antibacterial and anticancer properties of total extract of A. ascalonicum and proved these activities against a variety of pathogenic bacteria and human cancer cell lines [12,13]. Despite the vast knowledge of herbal medicines in Iran, a few attempts have been performed to evaluate the antibacterial and anticancer effects of different fractions of shallot in this country. The aims of this study were the investigation of anticancer and antibacterial activity of flavonoid fraction of this plant against human cancer cell lines and some pathogenic bacteria using MTT method and MIC.

MATERIALS AND METHODS

Bacterial strains and Human cell lines

The current survey was a descriptive cross-sectional study. Bacterial strains including vancomycin resistant Staphylococcus aureus (PTCC: 29213), meticillin resistant Staphylococcus aureus (PTCC 33591), vancomycin resistant Enterococcus faecalis (PTCC 51299), gentamicin resistant Pseudomonas aeruginosa (clinical), tobramycin resistant Escherichia coli (clinical), Bacillus cereus (PTCC 11778), Corynebacterium diphtheriae, Escherichia coli (PTCC 25922) Streptococcus pyogenes (PTCC 12386), and Klebsiella pneumoniae (PTCC 700603), as well as human cell lines including human cervical carcinoma cell line (HeLa) and Human Umbilical Vein Endothelial Cell line (HUVEC) were purchased from the National Cell Bank, Pasteur Institute of Iran.

Preparation of target plant fraction

The A. ascalonicum plant was collected from the Zagros Mountains in the north of Dezful city-Iran, in September 2016 and confirmed by School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. For the preparation of plant extract, 500g bulbs of A. ascalonicum were washed completely with water and then mashed properly and after mixing with 500mL of distilled water, the mixture was soaked and stirred using a magnetic stirrer. The suspension was filtered through filter paper (Whatman No. 1) and the extract was mixed with ethyl acetate in 50/50 proportions and stirred by a magnetic stirrer for 10 minutes. Then the upper layer was separated accurately using a separating funnel and centrifuged at 7000 rpm for 10 min. The ethyl acetate layer was removed and the remaining residue was re-extracted twice and the fraction was dried in a rotary evaporator (Heidolph-Germany) at 50 °C. The separated fraction by column chromatography, which showed antibacterial activity, was used as an active fraction in this study. According to our previous study this fraction could be identified by chemical methods such as nuclear magnetic resonance (NMR) spectroscopy, infrared spectroscopy (IR) and gas chromatography-mass spectrometry (GC/MS) [14], and it was a flavonoid with C14H18O6 formula [3].

Antibacterial susceptibility test

Antibacterial activity of flavonoid fraction of A. ascalonicum bulbs against both Gram-positive and negative bacteria was determined by minimum inhibitory concentration (MIC), which were determined using an improved E test method (AB Biodisk, Solna, Sweden) in order to show the antimicrobial and anticancer activity. In the improved E test, several AB Bio discs impregnated with different dilutions of the extracts were used instead of strips. In fact, it was a simulated version of the standard E test (15). First, the extract was dried by Rotary Evaporator, then was double diluted in methanol and impregnated 10µl from each dilution in each blank disc and then, the dry amount in each disc was calculated. The ciprofloxacin and gentamicin powders were used as positive and DMSO10% as
negative controls, simultaneously. Six concentrations of the extract including 0.18, 0.37, 0.75, 1.5, 3 and 6 mg/mL were prepared. The bacterial suspension vancomycin resistant Staphylococcus aureus (PTCC: 29213) was adjusted to equal the turbidity of 0.5 McFarland standards giving a final inoculum of 1.5 X 10^8 CFU/mL. They were then subcultured on Mueller Hinton agar (MHA) medium and 8 blank discs were placed gently on the surface of MHA plates. Ten microliters of each concentration of the flavonoid fraction of A. ascalonicum plant was impregnated on the separate sterile blank disc using sterile micropipette and incubated for 24 hours at 37 °C. The test was carried out with quadruplicates for each bacterium and the disc which did not show inhibition zone was considered as MIC (3) and the amount of dried extract in this disc and it is MIC was calculated.

Anticancer susceptibility test

The cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) (Gibco, Gaithersburg, MD) supplemented with 10% fetal bovine serum (FBS) (Gibco), penicillin (100 IU/mL), streptomycin (100 µg/mL) (Bioidea, Iran) and incubated in a humidified 5% CO₂ atmosphere at 37 °C. When the subcultures reached 50% to 80% confluence, they were trypsinized to a single cell suspension and subcultured in new culture flasks. After the subcultures reached more than 80% confluence (29 X 10⁶), they were re-trypsinized to a single cell suspension and passaged in lower numbers in new culture flasks. For investigation of anticancer properties of the flavonoid fraction of A. ascalonicum, several concentrations of the extract (0.18, 0.37, 0.75, 1.5, 3 and 6 mg/mL) were prepared. The anticancer effect of flavonoid fraction of this plant was evaluated against HeLa and HUVEC human cancer cell lines using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) method [16]. This study was performed in 96-well plates. Cells were cultured at a concentration of (5 × 10^³) cells/well and incubated for 48 hours at 37°C in 5% CO₂. Microscopic observation showed that cell layers were suitable in each well. The passaged cells were treated with the dilutions of the fraction and their effects were examined at different times (24-72h). The cells in each well were incubated with 10 μL of the MTT solution (5 mg/mL) (Sigma-Aldrich Chemical, Germany). Then, 200μL Dimethylsulfoxide (DMSO) (Sigma) was added to dissolve the formazan crystals. The amount of purple formazan was determined by measuring the optical density (OD) using the ELISA reader (BioRad, USA) at 582 nm and the cell viability was calculated as the percentage of surviving cells after extract treatment. The effects of A. ascalonicum were expressed by IC50 values (the concentration required for a 50% viability inhibition).

Calculation of Cell Viability

The rate of viable cells = Number of Viable Cells / Total Cells x 100 . Total cells mean viable plus dead cells.

STATISTICAL ANALYSIS

Statistical analysis of experimental results and determination of inhibitory concentration 50% (IC50) was performed through SPSS software version 16. All data were expressed as means ± standard deviation. The statistical significance of the difference was determined and was considered significant at p < 0.05.

RESULTS

Antibacterial activity of flavonoid fraction of A. Ascalonicum bulbs were evaluated against some selected bacteria using MIC method and the cytotoxic effect of the extract was determined on HeLa and HUVEC cells by the MTT assay. The antibacterial inhibitory activity of this flavonoid was found against all tested bacteria. The best antibacterial effect of the fraction was demonstrated in concentration of 1.5 µg/mL against the C. diphtheriae. However, in the current study, gentamicin resistant P. aeruginosa was the most resistant pathogenic bacterium (MIC=25 µg/mL) (Figure1). The inhibitory effects of flavonoid fraction of this herbal medicine on other tested bacteria are mentioned in Table 1. According to our data, MTT assay showed that this active extract of A. ascalonicum had a concentration-dependent anti-proliferative activity on HeLa cell lines and there was no cytotoxic effect against HUVEC cells (Table 2 and Table 3).
Figure 1. Antimicrobial activity of flavonoid fraction of A. ascalonicum against C. diphtheria (A) and Gentamicin resistant P. aeruginosa (B)

Table 1. The antibacterial effects of flavonoid fraction of A. ascalonicum, against selected bacteria

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>B. cereus</th>
<th>C. diptheria</th>
<th>S. pyogenes</th>
<th>K. pneumonia</th>
<th>E. coli</th>
<th>TREC*1</th>
<th>GRPA*2</th>
<th>VREF*3</th>
<th>VRSA*5</th>
<th>MRSA*6</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC (μg/mL)</td>
<td>3.1</td>
<td>1.5</td>
<td>12.5</td>
<td>6.25</td>
<td>3.1</td>
<td>6.25</td>
<td>25.0</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
</tr>
</tbody>
</table>

*1: Tobramycin resistant E. coli. *2: Gentamicin resistant P. aeruginosa
*3: Vancomycin-resistant Enterococcus faecalis. *4: Methicillin resistant Staphylococcus aureus
*5: Vancomycin resistant Staphylococcus aureus

Table 2. Anticancer activity and amount of OD after different times flavonoid fraction of A. ascalonicum against human cancer cell lines

<table>
<thead>
<tr>
<th>Extract concentration (mg/ml)</th>
<th>Amount of OD after 24h</th>
<th>Amount of OD after 48h</th>
<th>Amount of OD after 72h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control*</td>
<td>0.349</td>
<td>0.349</td>
<td>0.349</td>
</tr>
<tr>
<td>0.18</td>
<td>95.18 ± 2.11</td>
<td>100 ± 2.1</td>
<td>86.1 ± 3.89</td>
</tr>
<tr>
<td>0.75</td>
<td>60.25 ± 4.12</td>
<td>97 ± 4.2</td>
<td>60.25 ± 4.12</td>
</tr>
<tr>
<td>1.5</td>
<td>56.3 ± 5.0</td>
<td>97 ± 4.2</td>
<td>60.25 ± 4.12</td>
</tr>
<tr>
<td>3</td>
<td>48.2 ± 4.0</td>
<td>97 ± 4.2</td>
<td>60.25 ± 4.12</td>
</tr>
<tr>
<td>6</td>
<td>40.25 ± 4.11</td>
<td>97 ± 4.2</td>
<td>60.25 ± 4.12</td>
</tr>
</tbody>
</table>

*It contains cancer cells, DMEM culture medium and DMSO solution without extract A. ascalonicum
Dulbecco's Modified Eagle's medium (DMEM) Dimethyl sulfoxide (DMSO)

Table 3. Association between concentrations of flavonoid fraction of A. ascalonicum and Mean± SD biological survival rates (OD) of cells in different times

<table>
<thead>
<tr>
<th>COE mg/ml</th>
<th>72h</th>
<th>HUVEC cell line</th>
<th>HeLa cell line</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>94.0±4.8</td>
<td>16.15±4.08</td>
<td>94.0±3.9</td>
<td>34.0±4.05</td>
<td>94.0±4.1</td>
<td>40.25±4.11</td>
<td>0.18</td>
<td>88.1±3.89</td>
<td>99.0±4.0</td>
</tr>
<tr>
<td>3</td>
<td>94.0±4.1</td>
<td>20.1±5.01</td>
<td>96.0±4.0</td>
<td>36.5±4.25</td>
<td>96±0.93.9</td>
<td>48.2±4.0</td>
<td>0.015</td>
<td>88.1±3.89</td>
<td>99.0±4.0</td>
</tr>
<tr>
<td>1.5</td>
<td>94.0±3.2</td>
<td>22.0±3.65</td>
<td>97.0±3.1</td>
<td>40.1±5.45</td>
<td>97.0±4.2</td>
<td>56.3±5.0</td>
<td>P value</td>
<td>88.1±3.89</td>
<td>99.0±4.0</td>
</tr>
<tr>
<td>0.75</td>
<td>97.0±4.2</td>
<td>32.25±3.18</td>
<td>97.0±3.0</td>
<td>42.5±4.28</td>
<td>98.0±3.0</td>
<td>60.25±4.12</td>
<td>0.37</td>
<td>88.1±3.89</td>
<td>99.0±4.0</td>
</tr>
<tr>
<td>0.37</td>
<td>98.0±3.0</td>
<td>60.02±2.04</td>
<td>99.0±2.1</td>
<td>63.3±3.07</td>
<td>99.0±2.0</td>
<td>88.1±2.11</td>
<td>0.18</td>
<td>88.1±3.89</td>
<td>99.0±4.0</td>
</tr>
<tr>
<td>0.18</td>
<td>99.0±4.0</td>
<td>86.1±3.89</td>
<td>100±3.5</td>
<td>88.1±3.06</td>
<td>100±2.1</td>
<td>95.18±2.11</td>
<td></td>
<td>88.1±3.89</td>
<td>99.0±4.0</td>
</tr>
</tbody>
</table>

COE: Concentration of extracts

The IC50 values of the A. ascalonicum extract for Hela cell was 3 mg/mL but the treatment of HUVECs with the A. ascalonicum showed no considerable effect. The potential of the
Anticancer activity of the fraction to discriminate between normal and cancer cells is an important paradigm in the design and discovery of chemotherapeutic agents. The results of the current study demonstrated that HeLa cells were more sensitive to the cytotoxic activity of the plant while HUVEC showed no sensitivity to the extract. The highest sensitivity of cancer cell lines to flavonoid fraction of A. ascalonicum was presented after 72 hours. Detachment, shrinkage, and granulation of cytoplasm were seen in treated cells with flavonoid fraction of A. ascalonicum (Figure 2). Statistical analysis showed that at 24 hours incubation time of cell viability from 40% (at a concentration of 6 mg/mL) to 16% (after 72 hours) decreased and the difference was statistically significant. (P<0.05), (Figure 3).

![Microscopic images of Hela cell after 72 h incubation with flavonoid fraction of A. ascalonicum. Detachment and Shrinkage effects were visible in treated cells (A, untreated; B, treated cells). HUVEC, showed no sensitivity to the extract (not show images)](image1)

![Association between concentrations of flavonoid fraction of A. ascalonicum and cell viability rate in different times](image2)

DISCUSSION

Infectious diseases and cancers are the main causes of morbidity-mortality worldwide and there is a constant demand for new therapies to treat and prevent these life-threatening diseases. Use of synthetic antibacterial and anticancer drugs have not succeeded within the broad range of clinically relevant bacterial pathogens and cell lines, probably because of their adverse side effects and antimicrobial resistance [17]. Nowadays, the use of herbal medicines has been considered for treatment of infectious diseases and cancers due to their fewer side effects in comparison to chemical medicines. The previous studies have shown that the various extracts of A. ascalonicum have antibacterial activity against pathogenic bacteria [3-16]. In the current study, the best antibacterial inhibitory effect of flavonoid fraction of A. ascalonicum was found...
against *C. diphtheria*. Furthermore, gentamicin resistant *P. aeruginosa* was the most resistant pathogenic bacterium. Amin et al in their study have evaluated the effect of the flavonoid fraction of *A. ascalonicum* against a number of bacteria and showed the best effect of this fraction against *Bacillus cereus* [3]. To the best of the authors’ knowledge, there are a few reports detailing the antibacterial effects of flavonoid fraction of *A. ascalonicum* bulbs against bacteria. Wang and Ng have isolated an antifungal peptide from bulbs of *A. ascalonicum* and showed that this peptide inhibited mycelial growth in the fungus *Botrytis cinerea*. However, this isolated antifungal peptide did not inhibit *Mycosphaerella arachidicola* and *Fusarium oxysporum* [18]. In another study, the MICs of the extract of shallot against *Trichophyton mentagrophytes, Aspergillus niger, Aspergillus flavus* and *Aspergillus fumigatus* were 0.62, 10, 20 and 20 mg/mL respectively [3]. The other studies which have been done in this field revealed the antibacterial effect of the extracts of *A. ascalonicum* against *Mycobacterium tuberculosis* and *Listeria monocytogenes*. As fraction of Shallot extract showed, antimycobacterial activity with a MIC value of 500 μg/mL and its essential oils had the highest antimicrobial effects against *L. monocytogenes* [19,20,21]. Many studies also demonstrated that the family of *Allium* possesses anticancer activities as shown through their capacity to prevent tumor proliferation in vitro and in vivo [22]. In spite of extensive consumption of *A. ascalonicum*, reports regarding its organic effects are rarely compared to other *Allium* species such as onion and garlic. *A. ascalonicum* is usually known for antidermatophytic, anti-angiogenic and Hypcholesterolemic properties [23,24]. In the current study, flavonoid fraction of *A. ascalonicum* plant had a concentration-dependent inhibition activity on HeLa cells, but the treatment of HUVECs with the *A. ascalonicum* showed no considerable effect. In a study performed by Azadi et al. the in vitro effect of chloroformic and aqueous extracts of Iranian shallot (*Allium hirtifolium*) on the proliferation of HeLa, L929 (mouse fibroblast cell line) and MCF7 (human breast adenocarcinoma cell line) cells were investigated. Although Hela and MCF-7 cell lines were sensitive to Iranian shallot, the cell survival rate was almost unchanged in L929 cells. It means that *A. hirtifolium* did not affect the normal L929 mouse cells and it only decreased cancer cell populations [13]. *A. hirtifolium* showed growth inhibitory effect against MCF-7 and HeLa cells with IC50 values of 24 and 20 mg/mL, respectively, for 72 h. These results approved the data of the present study on the sensitivity of this cell line to flavonoid fraction of *A. ascalonicum*. In this study, there is an association between concentrations of flavonoid fraction of *A. ascalonicum* and cell viability rate at different times. According to data, increase in the concentration of *A. ascalonicum* extract decreases the cell viability count. This result confirms the reports of previous studies about the dose-dependent effect of *A. ascalonicum* extract on the inhibition of proliferation of cancer cells [12, 25]. In the study conducted by Pandurangan et al., anticancer effect of fresh and dry *A. ascalonicum* was assessed against liver cancer cell line HepG2 by MTT. The result shows that both extracts of shallot have anticancer potential (IC50 of 50 μg/mL) [11]. Finally, isolation of total extract components and identification of their combinations are recommended for future studies. Correspondingly, doing further studies to determine the cytotoxicity of other effective fraction is recommended. Moreover, it is hoped that through proven different extracts of *A. ascalonicum*, the product could be useful as a medicinal plant in one of the pharmaceutical forms in future.

CONCLUSION

This study highlights promoting increased consumption of this plant as a necessary means to inhibit or even to cancer therapy. However, supplementary studies are essential for assessment of the molecular mechanisms of anticancer effects of active composites from shallot.

ACKNOWLEDGEMENTS

The authors thank the Department of Microbiology of Ahvaz Jundishapur University of Medical Sciences (Ahvaz, Iran) for their
cooperation (Grant No. and ethic, 15730507931022).

FUNDING

This research received a specific grant from the Center for the Study of Religion and Health.

“The authors declare no conflict of interest”

REFERENCES

15. Amin M, Choghakabodi PM, Hamidi MA, Najafian M, Sheikh AF. In vitro antimicrobial activities of metabolites from vaginal

