Systematic Review and Meta-Analysis of Computer Based Simulation Training for Non-Technical Skills Training and Knowledge in Postgraduate Medical Education

Morkos Iskander*

Department of Educational Research, Lancaster University, United Kingdom, Doctoral Candidate, Lancaster University

Abstract

Introduction: The increase in simulation training across the range of medical education offers a potential route to train non-technical skills and knowledge. More recently, there has been a move towards the use of computer based, including virtual reality, simulation. However, studies evaluating the efficacy of computer based simulation training have used inconsistent methodology, limiting the capacity to construct an overview.

The goal of this study is to systematically review the existing literature and carry out a meta-analysis of the existing randomised controlled trials, evaluating the efficacy of computer based simulation on non-technical skills and knowledge, with sub analysis between doctors in training and those in continuing medical education.

Methods: A scoping search identified the relevant search terms, followed by a comprehensive database search of literature from 2007 until the present on MEDLINE, PubMed, CINHAL, ERIC, BEI, PsychINFO, Proquest Dissertations & Theses and Educational Abstracts databases with hand searching the table of contents of major medical education journals. The inclusion criteria were randomised controlled trials for the meta-analysis and cohort studies for the systematic review, with subjects being postgraduate doctors using a computer based simulation for training and education.

Results: This review found evidence to support the utilisation of computer based simulation for non-technical skills and knowledge and understanding domains.

Discussion: Using computer based simulation offers an opportunity to enhance non-technical aspects of practicing doctors in a safe and effective manner. More high quality controlled studies are required to enable the demarcation of training boundaries.

Keywords: NON-TECHNICAL SKILLS; SIMULATION-BASED TRAINING; SIMULATION-BASED MEDICAL EDUCATION; TECHNOLOGY ENHANCED LEARNING

Introduction

Simulation has been a part of education as both a method of providing situated learning in a safe environment, as well as assessment of capability and competence. Itself a broad term, simulation aims to replicate and represent a scenario in a faithful manner, with the trainee required to respond in a manner akin to real life. The attraction of simulation is the capacity to provide equal and standardised educational opportunities to all students, offer a controlled and safe environment to explore scenarios, as well as afford the opportunity for repetitive practice. For these reasons, the use of simulation for training purposes has been widespread in a variety of professions from military exercises, technical engineering operations, as well as in the training of healthcare professionals.

*Corresponding author: Morkos Iskander
Department of Educational Research, Lancaster University, Lancaster, United Kingdom
Phone: +1 (524) 510851
Email: morkos.iskander@doctors.org.uk
Simulation is resource intensive, in terms of time, staffing and financing (1, 2). Computer based simulation [CBS], including virtual reality simulation, carries additional demands for expertise in design, both in terms of developing the technology and in terms of incorporation into the educational program (3, 4). It can therefore be more difficult to gain adequate educational returns to the resource investment. However, through the rapid rate of technological progress, CBS has become ever-more immersive and reflective of clinical practice. There is the additional potential advantage of increased accessibility to trainees. It therefore follows that CBS offers a method of increasing the fidelity of simulation, with a potential for expanding simulation to encompass a wider range of actions and settings. The initial high development and start up costs associated with CBS may be viewed as a worthwhile one-off investment.

Recently, the expectation that appropriate and comprehensive training will be undertaken before clinical practice, altered models of healthcare delivery, and coupled with a heightened focus on patient safety has led to an overall decrease in clinical exposure to direct clinical care, and thus fewer learning opportunities (5-7). Simulation is seen as a solution to all these aspects through a focused curriculum, with a demonstrable impact on patient and behaviour (8, 9).

The utility of simulation can be broadly divided into two subcategories; the first of these is to provide a summative assessment in a standardised setting, with a view to ensure professional competence; the second setting is in the formative environment, providing an arena for deliberate practice and an opportunity to apply knowledge in a supportive environment, without exposing patients to risk.

The value added by simulation to medical training is reliant on the ability to transfer lessons learnt in the simulation to clinical practice. Therefore, a high degree of fidelity to the clinical environment is required to smooth this transition. As medical sciences have advances and become reliant on an increasing number of technological methods for diagnosis and treatment, this has revolutionised the clinical management of patients. However, this had the side-effect of posing a new challenge to training, as the effective utilisation of these technologies has been shown to incur additional risks to the patient, particularly during the physician’s ‘learning curve’ phase of practice. It has also been suggested that teaching the required skills to use these technologies requires a different approach to standard clinical education.

Technological aids to simulation have been in use for some time, with the initial use of models capable of giving physical and tactile feedback, the most famous of which is the Resusci-Anne model, to much more technologically advanced use of virtual reality simulators for robotic assisted surgery (10). Other technological adjuncts to simulation methods include part-task trainers, computer-based simulators, part-body simulators, model patients and full environment simulation (11-14).

Simulation has been viewed in the past through the lens of various theoretical frameworks, including but not limited to social constructivism, reflective and transformative learning and activity theory (15-18). For the purposes of this study, I take the view that while learning and understanding takes place in a personal sphere, requiring the internalisation of information and interpretation, there is a definite external reality through which responses can be measured and evaluated, allowing for assessment of learning gains and professional development. Furthermore, the personalised response can be predicted and encouraged to develop along an explicit path, as dictated by a combination of external stimulus and prior knowledge. Proceeding along these lines of argument, with specific reference to medical education, leads to the conclusion that there is a ‘correct’ diagnosis and ‘correct’ treatment based upon objectively verifiable clinical evidence.
Given that all doctors undertake broadly similar undergraduate training and have comparable postgraduate knowledge, the responses to training programs should be predictable. It can therefore be assumed that simulation training in medical education can utilise specific clinical information to prompt specific line of thought and practice. It therefore follows that the use of standardised, predetermined stimuli in the simulation would maximise the educational value of the scenario and hypothetically, increase the transferability skills and knowledge between simulation and practice (19, 20). From these principles, it can be safe to assume that conclusions reached in this review regarding computer based simulation as a pedagogical technique can be generalised to medical education as a whole.

Research Questions
This review will attempt to evaluate CBS across the breadth of postgraduate medical education, encompassing training grades, as well as certified specialists. No limits will be placed based on specialty.

Scope of Simulation Training
Postgraduate training can be subdivided into three distinct sections, namely knowledge and understanding, technical skills, and non-technical skills (NOTS). This review will examine these aspects in turn. In evaluating technical skills, it is important to evaluate achieving competence, defined here as fewer critical or serious errors and technical proficiency, with time taken to complete a specified procedure serving as a surrogate marker. Furthermore, given that CBS affords the opportunity for the trainee to utilise it independently, this review also evaluated the impact of feedback on performance. Subgroup analysis between trainees and doctors in continuing medical education [CME] post-training was also carried out.

Questions
This review will attempt to define technology-enhanced high fidelity simulation in medical education, and assess the effectiveness of these simulations for medical education.

RQ1: What is the impact of CBS in postgraduate medical training?
RQ1.1: What is the impact of CBS on technical skills?
RQ1.1.1: What is the impact on competence?
RQ1.1.2: What is the impact on proficiency?
RQ1.2: What is the impact of CBS on NOTS?
RQ1.3: What is the impact of CBS on knowledge and understanding?
RQ1.4: How does mentoring and feedback affect CBS training?

Methods
The systematic review was carried out in a step-wise manner, with initial inclusion and exclusion criteria designed to capture relevant research articles, followed by an unstructured scoping search designed to elicit terms to be included in the systematic search terms, and finally applying the search terms through selected databases, chosen to capture relevant literature. Published and unpublished works were included to avoid any publication bias. Details of each step of the process is outlined below. For this systematic review, I will follow the format of the Preferred Reporting Items for Systematic reviews and Meta-analyses [PRISMA], as reported by Moher, Liberati, Tetzlaff, Altman, Group (1). This allows for easily accessible diagrammatic representation of the literature search, and explains the stages of data extraction and inclusion into the final analysis.

Inclusion and Exclusion Criteria
The criteria for inclusion into this review were devised to enable the capture of the breadth of computer based simulation in postgraduate medical education. Articles were eligible for inclusion if they included postgraduate doctors, either as the sole type of participants, or if they included doctors as
a subset, where all the relevant information regarding performance and outcomes could be gleaned. The forms of simulation used were limited to computer-based simulation, defined as conducted either wholly through virtual reality, including virtual patients or involving the use of a combination of the above. Furthermore, studies were included only if they were focused on simulation for formative, rather than summative purposes. While the meta-analysis component of this review included only randomised-controlled trails [RCT], other study designs, including cohort, cross-over, and observational studies were included in the qualitative component of the review; additionally, no absolute requirement was placed for the inclusion of a comparator control arm within these studies. No geographical limitations were placed in the inclusion criteria. In order to maintain relevance of the study in the context of rapidly evolving technology, this review only includes studies reported after 2007 up to the present day.

Studies were excluded if they were descriptive, opinion pieces, editorials or review articles, as these were deemed not to contain additional relevant experimental information beyond what would be captured through the literature searches; however, the references and sources of these articles were hand-searched to ensure the inclusion of any additional sources. All studies that were aimed at evaluating a specific computer based simulation itself, rather than its educational value, such as feasibility and validation studies were also excluded. Finally, there was a necessity to limit the review to studies reported in English.

Scoping Search

In order to initially explore and define the concept of computer based simulation in the literature, a scoping search was carried out, to allow for the development of a comprehensive search strategy (21). Initial searches of the terms ‘high fidelity simulation’ and ‘technology enhanced simulation’ were conducted via PubMed and ERIC databases in order to identify search terms. The initial fifty results from each search on both databases were scanned to identify the terms.

Search Terms

Based on the scoping search, the search terms in Table 1 were elicited in order to construct the systematic literature search.

Databases and Journals

Table 2 provides a summary of the databases included in the literature search. Table 3 is a list of the journals where table of contents were hand searched for relevant publications.

Results

Literature Search Results

Combining the previously specified inclusion and exclusion criteria with the literature search

Table 1: Literature search terms derived from the initial scoping search

<table>
<thead>
<tr>
<th>Technological</th>
<th>Simulation</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer based</td>
<td>Technology-enhanced</td>
<td>Simulation</td>
</tr>
<tr>
<td>Computer-based</td>
<td>TEL</td>
<td>Simulate</td>
</tr>
<tr>
<td>Virtual reality</td>
<td>Digital</td>
<td>Role play</td>
</tr>
<tr>
<td>Technology enhanced</td>
<td>Immersive</td>
<td>Role-play</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limit to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medical student</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doctor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medical education</td>
</tr>
<tr>
<td></td>
<td></td>
<td>English language</td>
</tr>
</tbody>
</table>

Table 2: Databases included in the literature search

<table>
<thead>
<tr>
<th>MEDLINE</th>
<th>ERIC</th>
<th>PsychINFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CINHAL</td>
<td>British Education Index [BEI]</td>
<td>Educational Abstracts</td>
</tr>
<tr>
<td>PubMed</td>
<td>ProQuest Dissertations & Theses Global*</td>
<td></td>
</tr>
</tbody>
</table>

* Additional limits to “higher education” and “healthcare education”
detailed in sections 5.3 and 5.4 led to the results outlined in Figure 1.

Data Extraction and Analysis

This stage of the review is split between the quantitative and qualitative phases. All included RCTs were individually inputted into *Review Manager 5.3* for statistical analysis, with primary data used when available (22). Data from each trial was inputted with regard to each of the domains of Non-Technical Skills, and Knowledge & Understanding. Statistical analysis, including the generation of the forest plots for each meta-analysis was carried out using the integrated *Review Manager* calculator.

For qualitative assessment, included articles were evaluated for appropriate selection and data sampling techniques, utilisation of appropriate data analysis methods, capacity...
to generalise the study outcomes to other contexts within medical education and clarity of the study reporting. This was carried out via detailed review for evidence of a justified sampling technique that is likely to be representative of the medical profession as a whole, the use of validated and accepted data extraction and analysis techniques, with attempted minimisation of bias at each stage, and finally, whether the study design and protocol is described in sufficient detail to allow for replication.

The combined results of both the quantitative and qualitative components of this review are subsequently drawn together to enable a conclusion to the impact of CBS at each examined domain, as well as to the magnitude of said impact. The results are described below in the same order as addressed in the research questions

Non-Technical Skills

Non-technical skills were assessed in two identified RCTs and two cohort studies [Appendix 10.5], with all studies set in the postgraduate training context. Non-technical skills examined in these studies were composed entirely of communication skills. Meta-analysis of the two RCTs, Figure 2, reveals an increased odds ratio of improved non-technical skills following CBS training, although this did not quite reach the level of statistical significance.

Qualitative analysis suggested that CBS has a positive impact on trainees’ communication skills, with only one study that did not demonstrate a direct relationship between CB training and improved NOTS (23). Trainees reported increased confidence in their communication skills following CBS training (24, 25).

Knowledge and Understanding

Meta-analysis of four RCT is represented in Figure 3, with all RCTs set in the postgraduate training context. The results of the meta-analysis indicated a possible advantage to CBS training for knowledge and learning, but the result did not reach the level of statistical significance. Two further cohort studies were included in the qualitative analysis, with one study examining the CME context. It is interesting to note that two studies compared CBS with live simulation training demonstrated that CBS achieved equivalent outcomes with less training time, suggesting that it is a more effective means of training.

Figure 2: Box plot of the meta-analysis of randomised controlled trials on non-technical skills competence with CBS training. The results approached, but did not reach the level of statistical significance.

Figure 3: Box plot of the meta-analysis of randomised controlled trials on improving knowledge and understanding with CBS training. The results approached, but did not reach the level of statistical significance.
Discussion

This systematic review examined the use of computer based simulation across postgraduate medical education, in both the training and continuing medical education settings. The training setting was much more extensively studied compared to CME across all of the domains evaluated here. The advantage of CBS over standard training methodologies, including live simulation, include the potential to allow repeated deliberate practice in a way that would not be possible otherwise. Several studies explored the use of CBS to allow doctors to explore possibilities that would not be feasible using other training methodologies for either pragmatic or ethical reasons, noting the advantage of affording this opportunity on the cognitive development of the trainees allowing the acquisition of ‘expert’ level skill (24, 26). A significant impact of CBS was on NOTS, as well as the knowledge domains was prominent in the meta-analysis. This study is by its very nature limited by the available literature, which contained few randomised controlled trials. The rationale for limiting the meta-analysis to RCTs only was based on the premise of providing a high level of evidence in order to guide the use of CBS. While there is no minimum number of studies required for the statistical analysis involved in constructing a meta-analysis, there is a rationale for suggesting a working minimum of three trials, in order to given a meaningful result (27). Due to the small number of trials examining domains other than technical skill, this was not always possible, with a notable absence of RCTs in the assessment of the effect of mentorship entirely. It is also important to acknowledge that a statistically significant degree of heterogeneity was evident in the meta-analyses for NOTS and knowledge and learning domains, suggesting that the results of these meta-analyses require careful interpretation. It is however worth noting that the results of the systematic review of non-RCT largely corroborated their results. Additionally, while it has been identified in this review that the greatest benefit of CBS is seen in those with least clinical experience, medical students, that group fell outside the scope of this review. It may be extrapolated that CBS may be most effective in that educational context, although this would ideally be explored in the future.

Conclusion

This review explored the use of computer based simulation across the three core domains applicable to each and every career within medical practice, namely non-technical skills and knowledge. The available data was also analysed based on the training level of the trainees. Effective Computer Based Simulation

From the literature evaluated here, it is clear that while CBS can play a role in most aspects in of postgraduate medical training, in both the training grades and CME settings. There is relatively strong evidence to support the use of CBS in all domains of medical education examined here. The clinical value of non-technical skills in particular is being increasingly recognised, and we can conclude, based on the results presented here that CBS offers an effective method for training. Maximising the efficacy of CBS simulation requires both a well designed simulation, with clearly defined goals, supported by a mechanism for feedback and support development. Crucially, all studies examined here that compared CBS with other forms of simulation, either demonstrated a benefit to using CBS or at the very least confirmed that CBS is non-inferior to standard simulation. This suggests that using CBS may carry advantages over the standard simulation where high level performance is desired, but difficult
to rehearse; this may be the primary driving force behind utilising CBS for technical skill training in medical education.

Limitations of Computer Based Simulation

It is important to appreciate the inherent limitations of CBS training, particularly given the high stakes involved in medical education. The first limit encountered is, in common with other forms of simulation training, the requirement for the suspension of disbelief to enable immersion and engagement with the simulation. To some extent this may be countered by utilising higher fidelity simulation, but it remains likely that simulation training is likely to still lack the pressure encountered in the clinical setting. Nevertheless, it is likely that a ‘fidelity gap’ will remain between simulation and clinical practice.

The initial set up of CBS requires a large investment of expertise, time and expense to develop, significant testing to validate, with an inherently limited shelf life before technological innovation necessitates overhaul and redesign of the simulation platform.

Future Research

There remain several questions regarding the use of CBS that need to be examined to enable a more thorough understanding of the subject, and how best it may be deployed. This is particularly pertinent given that CBS is resource intensive to develop and maintain. Undoubtedly, the key point that requires more rigorous and thorough evaluation is the degree of translation of skills and knowledge acquired in the CBS setting into the context of clinical practice. As this is the end goal of medical education and training, it is vital to retain this focus, and the subsequent impact on patient safety and quality of care provided.

With advancing technological developments, as well as set metrics identified in simulations, there is a potential possibility to develop an automated feedback ‘built into’ CBS, allowing a true independent learning experience, capable of adapting to more settings and situations.

Conflict of Interest: None Declared.

References

Appendices

Appendix 1: Sources included in quantitative analysis
Appendix 2: Sources included in qualitative analysis

Appendix 3: Sources included in analysis of non-technical skills
