• Logo
  • SBMUJournals

Role of Optical Spectroscopic Methods in Neuro-Oncological Sciences

Maryam Bahreini




In the surgical treatment of malignant tumors, it is crucial to characterize the tumor as precisely as possible. The determination of the exact tumor location as well as the analysis of its properties is very important in order to obtain an accurate diagnosis as early as possible. In neurosurgical applications, the optical, non-invasive and in situ techniques allow for the label-free analysis of tissue, which is helpful in neuropathology. In the past decades, optical spectroscopic methods have been investigated drastically in the management of cancer. In the optical spectroscopic techniques, tissue interrogate with sources of light which are ranged from the ultraviolet to the infrared wavelength in the spectrum. The information accumulation of light can be in a reflection which is named reflectance spectroscopy; or interactions with tissue at different wavelengths which are called fluorescence and Raman spectroscopy. This review paper introduces the optical spectroscopic methods which are used to characterize brain tumors (neuro-oncology). Based on biochemical information obtained from these spectroscopic methods, it is possible to identify tumor from normal brain tissues, to indicate tumor margins, the borders towards normal brain tissue and infiltrating gliomas, to distinguish radiation damage of tissues, to detect particular central nervous system (CNS) structures to identify cell types using particular neurotransmitters, to detect cells or drugs which are optically labeled within therapeutic intermediations and to estimate the viability of tissue and the prediction of apoptosis beginning in vitro and in vivo. The label-free, optical biochemical spectroscopic methods can provide clinically relevant information and need to be further exploited to develop a safe and easy-to-use technology for in situ diagnosis of malignant tumors.


spectroscopy; neuro-oncology; optics


Lin WC, Toms SA, Motamedi M, Jansen ED, Mahadevan-Jansen A. Brain tumor demarcation using optical spectroscopy; an in vitro study. J Biomed Opt. 2000; 5(2): 214-220.

Lin WC, Toms SA, Johnson M, Jansen ED, Mahadevan-Jansen A. In Vivo Brain Tumor Demarcation Using Optical Spectroscopy. Photochem Photobiol. 2001;73(4):396-402.

Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol. 2003 ;13(1):195-208.

Petry R, Schmitt M, Popp J. Raman spectroscopy—a prospective tool in the life sciences. Chemphyschem. 2003 ;4(1):14-30.

El-Zein R, Bondy M, Wrensch M. Epidemiology of brain tumors, in Brain tumors, Springer, 2005.

Mut M, Schiff.“Unmet needs in the treatment of glioblastoma,” Expert Review of Anticancer Therapy. 2009;9(5):545–51.

Valdés PA, Kim A, Leblond F, Conde OM, Harris BT, Paulsen KD, et al. Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low-and high-grade glioma surgery. J Biomed Opt. 2011;16(11):116007.

Moliterno JA, Patel TR, Piepmeier JM. Neurosurgical approach. Cancer J. 2012;18(1):20-5.

Simon M, Schramm J. Surgical management of intracranial gliomas. Recent Results Cancer Res 2009; 171: 105–24.

Albayrak B, Samdani AF, Black PM. Intra-operative magnetic resonance imaging in neurosurgery. Acta Neurochir (Wien). 2004;146(6):543-56.

Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol. 2011;12(11):997-1003.

Sankar T, Delaney PM, Ryan RW, Eschbacher J, Abdelwahab M, Nakaji P, et al. Miniaturized handheld confocal microscopy for neurosurgery: results in an experimental glioblastoma model. Neurosurgery. 2010;66(2):410-8.

Duyn JH. The future of ultra-high field MRI and fMRI for study of the human brain. Neuroimage. 2012; 62(2): 1241-8.

Serres S, Soto MS, Hamilton A, McAteer MA, Carbonell WS, Robson MD, et al. Molecular MRI enables early and sensitive detection of brain metastases. Proc Natl Acad Sci U S A. 2012 24;109(17):6674-9.

Somerset HL, Kleinschmidt-Demasters BK. Approach to the intraoperative consultation for neurosurgical specimens. Adv AnatPathol. 2011; 18: 446–9.

Diem M, Papamarkakis K, Schubert J, Bird B, Romeo MJ, Miljković M. The infrared spectral signatures of disease: extracting the distinguishing spectral features between normal and diseased states. Appl Spectrosc 2009; 63: 307A–318A.

Gurfinke M, Ke S, Wen X, Li C, Sevick-Muraca EM. Near-infrared fluorescence optical imaging and tomography. Dis Markers. 2003-2004;19(2-3):107-21.

Shah N, Cerussi AE, Jakubowski D, Hsiang D, Butler J, Tromberg BJ. The role of diffuse optical spectroscopy in the clinical management of breast cancer. Dis Markers. 2003-2004;19(2-3):95-105.

Mahmood U. Near infrared optical applications in molecular imaging. earlier, more accurate assessment of disease presence, disease course, and efficacy of disease treatment. IEEE Eng Med Biol Mag. 2004; 23: 58-66.

Sokolov K, Follen M, Richards-Kortum R. Optical spectroscopy for detection of neoplasia. Curr Opin Chem Biol. 2002 ;6(5):651-8.

Drezek RA, Richards-Kortum R, Brewer MA, Feld MS, Pitris C, Ferenczy A, et al. Optical imaging of the cervix. Cancer. 2003; 98(S9): 2015-27.

Lau C, Sćepanović O, Mirkovic J, McGee S, Yu CC, Fulghum S, et al. Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy. J Biomed Opt. 2009; 14(2): 024031

Kim Y, Liu Y, Backman V. Coherent backscattering spectroscopy: a new technique for tissue diagnosis. Conf Proc IEEE Eng Med Biol Soc. 2004;7:5285-8.

Bosschaart N, Aalders MC, Faber DJ, Weda JJ, van Gemert MJ, van Leeuwen TG. Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy. Opt Lett. 2009 ;34(23):3746-8.

Liu Q. Role of optical spectroscopy using endogenous contrasts in clinical cancer diagnosis. World J Clin Oncol. 2011 ;2(1):50-63.

Arifler D, MacAulay C, Follen M, Richards-Kortum R. Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements. J Biomed Opt. 2006;11(6): 064027.

Brown JQ, Wilke LG, Geradts J, Kennedy SA, Palmer GM, Ramanujam N. Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo. Cancer Res. 2009; 69: 2919-26

Cerussi A, Shah N, Hsiang D, Durkin A, Butler J, Tromberg BJ. In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy. J Biomed Opt. 2006; 11: 044005

Singh B, Gautam R, Kumar S, Kumar VBN, Nongthomba U, NandiD, et al. Application of vibrational microspectroscopy to biology and medicine. Curr Sci (Bangalore). 2012; 102(2): 232-44.

Kendall C, Hutchings J, Barr H, Shepherd N, Stone N. Exploiting the diagnostic potential of biomolecular fi ngerprinting with vibrational spectroscopy. Faraday Discuss. 2011; 149: 279–90.

Mourant JR, Freyer JP, Hielscher AH, Eick AA, Shen D, Johnson TM. Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl Opt. 1998;37(16):3586-93.

Bigio IJ, Mourant JR, Boyer J, Johnson T. "Elastic scattering spectroscopy as a diagnostic for tissue pathologies," Opt. Soc. America, Anaheim, CA, USA, 1994; 70-71.

Bigio IJ, Mourant JR, Boyer J, Johnson TM. "Elastic scatter- ing spectroscopy for diagnosis of tissue pathologies," Opt. Soc. America, Orlando, FL, USA, 1996; 14-19.

Chaiken J, Goodisman J, Deng B, Bussjager RJ, Shaheen G. Simultaneous, noninvasive observation of elastic scattering, fluorescence and inelastic scattering as a monitor of blood flow and hematocrit in human fingertip capillary beds. J Biomed Opt. 2009;14(5):050505.

Shafer-Peltier KE, Haka AS, Motz JT, Fitzmaurice M, Dasari RR, Feld MS. Model-based biological Raman spectral imaging. J Cell Biochem Suppl. 2002; 39: 125-37

Skala MC, Riching KM, Gendron-Fitzpatrick A , Eickhoff J, Eliceiri KW, White JG, et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci. 2007. 104(49): p. 19494-19499.

Toms SA, Konrad PE, Lin WC, Weil RJ. Neuro-oncological applications of optical spectroscopy. Technol Cancer Res Treat. 2006; 5(3): 231-8.

Antonsson J, Eriksson O, Blomstedt P, Bergenheim AT, I Hariz M, Richter J, et al. Diffuse reflectance spectroscopy measurements for tissue-type discrimination during deep brain stimulation. J Neural Eng 2008; 5: 185-190

Lin WC, Sandberg DI, Bhatia S, Johnson M, Morrison G, Ragheb J. Optical spectroscopy for in-vitro differentiation of pediatric neoplastic and epileptogenic brain lesions. J Biomed Opt. 2009;14(1):014028.

Stelzle F, Zam A, Adler W, Douplik A, Tangermann-Gerk K, Nkenke E, et al. Diffuse Reflectance Spectroscopy for Optical Nerve Identification – preliminary ex vivo results for feedback controlled oral and maxillofacial laser surgery. Physics Procedia. 2010;5:647-54.

Caine S, Heraud P, Tobin MJ, McNaughton D, Bernard CC. The application of Fourier transform infrared microspectroscopy for the study of diseased central nervous system tissue. Neuroimage. 2012; 59: 3624–40.

Steiner G, Shaw A, Choo-Smith LP, Abuid MH, Schackert G, Sobottka S, et al. Distinguishing and grading human gliomas by IR spectroscopy. Biopolymers. 2003; 72: 464–71.

Amharref N, Beljebbar A, Dukic S, Venteo L, Schneider L, Pluot M, et al. Brain tissue characterisation by infrared imaging in a rat glioma model. Biochim Biophys Acta. 2006;1758(7):892-9.

Krafft C, Kirsch M, Beleites C, Schackert G, Salzer R. Methodology for fi ber-optic Raman mapping and FTIR imaging of metastases in mouse brains. Anal Bioanal Chem 2007; 389: 1133–42.

Bergner N, Romeike BF, Reichart R, Kalff R, Krafft C, Popp J. Tumor margin identifi cation and prediction of the primary tumor from brain metastases using FTIR imaging and support vector machines. Analyst 2013; 138: 3983–90.

Krafft C, Sobottka SB, Schackert G, Salzer R. Analysis of human brain tissue, brain tumors and tumor cells by infrared spectroscopic mapping. Analyst 2004; 129: 921–5.

Noreen R, Moenner M, Hwu Y,Petibois C. FTIR spectro-imaging of collagens for characterization and grading of gliomas. Biotechnol Adv 2012; 30: 1432–46.

Steiner G, Küchler S, Hermann A, Koch E, Salzer R, Schackert G,et al. Rapid and label-free classification of human glioma cells by infrared spectroscopic imaging. Cytometry A 2008; 73A: 1158–64.

Steiner G, Mackenroth L, Geiger KD, Stelling A, Pinzer T, Uckermann O, et al. Label-free differentiation of human pituitary adenomas by FT-IR spectroscopic imaging. Anal Bioanal Chem. 2012;403(3):727-35.

Wehbe K, Pineau R, Eimer S, Vital A, Loiseau H, Déléris G. Differentiation between normal and tumor vasculature of animal and human glioma by FTIR imaging. Analyst 2010; 135: 3052–9.

Fenn MB, Xanthopoulos P, Pyrgiotakis G, Grobmyer SR, Pardalos PM, Hench LL. Raman spectroscopy for clinical oncology. Adv Opt Technol. 2011; 2011:1-20.

Uckermann O, Galli R, Mackenroth L, Geiger K, Steiner G, Koch E, et al. Optical Biochemical Imaging: Potential New Applications in Neuro-Oncology. Eur Assoc NeuroOncol Mag. 2014; 4(1): 20-6.

Matsuura Y, Kino S, Katagiri T. Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total reflection. Appl Opt. 2009; 48(28): 5396-400.

Stelling AL, Toher D, Uckermann O, Tavkin J, Leipnitz E, Schweizer J, et al. Infrared spectroscopic studies of cells and tissues: triple helix proteins as a potential biomarker for tumors. PloS One. 2013; 8(3): e58332.

Bergner N, Krafft C, Geiger KD, Kirsch M, Schackert G, Popp J. Unsupervised unmixing of Raman microspectroscopic images for morphochemical analysis of non-dried brain tumor specimens. Anal Bioanal Chem. 2012; 403(3): 719-25.

Amharref N, Beljebbar A, Dukic S, Venteo L, Schneider L, Pluot M, et al. Discriminating healthy from tumor and necrosis tissue in rat brain tissue samples by Raman spectral imaging. Biochim Biophys Acta. 2007;1768(10):2605-15.

Sato H, Yamamoto YS, Maruyama A, Katagiri T, Matsuurac Y, Ozaki Y. Raman study of brain functions in live mice and rats: A pilot study. Vibrational Spectrosc. 2009; 50(1): 125-30.

Tay LL, Tremblay RG, Hulse J, Zurakowski B, Thompson M, Bani-Yaghoub M. Detection of acute brain injury by Raman spectral signature. Analyst. 2011; 136: 1620–6.

Kirsch M, Schackert G, Salzer R, Krafft C. Raman spectroscopic imaging for in vivo detection of cerebral brain metastases. Anal Bioanal Chem. 2010;398(4):1707-13.

Krafft C, Sobottka SB, Schackert G, Salzer R. Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors. Analyst. 2005; 130: 1070–7.

Krafft C, Miljanic S, Sobottka SB, Schackert G, Salzer R. Near infrared Raman spectroscopy to study the composition of human brain tissue and tumors. Proc SPIE 5141, Diagnostic Optical Spectroscopy in Biomedicine II, 230 (October 9, 2003); doi:10.1117/12.500469; http://dx.doi.org/10.1117/12.500469 [last accessed November 5, 2013].

Leslie DG, Kast RE, Poulik JM, Rabah R, Sood S, Auner GW, et al. Identification of pediatric brain neoplasms using Raman spectroscopy. Pediatr Neurosurg. 2012;48(2):109-17.

Krafft C, Belay B, Bergner N, Romeike BF, Reichart R, Kalff R, et al. Advances in optical biopsy – correlation of malignancy and cell density of primary brain tumors using Raman microspectroscopic imaging. Analyst 2012; 137: 5533–7.

Beljebbar A, Dukic S, Amharref N, Manfait M. Ex vivo and in vivo diagnosis of C6 glioblastoma development by Raman spectroscopy coupled to a microprobe. Anal Bioanal Chem. 2010;398(1):477-87

Ellis DI, Goodacre R. Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst. 2006;131(8):875-85.

Köhler M, Machill S, Salzer R, Krafft C. Characterization of lipid extracts from brain tissue and tumors using Raman spectroscopy and mass spectrometry. Anal Bioanal Chem. 2009;393(5):1513–20.

Rabah R, Weber R, Serhatkulu GK, Cao A, Dai H, Pandya A, et al.Diagnosis of neuroblastoma and ganglioneuroma using Raman spectroscopy. J Pediatr Surg. 2008 Jan;43(1):171-6.

Wills H, R Kast, C Stewart, R Rabah, A Pandya, Poulik J, et al., Raman spectroscopy detects and distinguishes neuroblastoma and related tissues in fresh and (banked) frozen specimens. J Pediatr Surg. 2009; 44(2): 386-91.

Beleites C, Geiger K, Kirsch M, Sobottka SB, Schackert G, Salzer R. Raman spectroscopic grading of astrocytoma tissues: using soft reference information. Anal Bioanal Chem. 2011;400(9):2801-16.

Dochow S, Latka I, Becker M, Spittel R, Kobelke J, Schuster K, et al. Multicore fi ber with integrated fi ber Bragg gratings for background-free Raman sensing. Opt Express 2012; 20: 20156–69.

Duraipandian S, Sylvest Bergholt M, Zheng W, Yu Ho K, Teh M, Guan Yeoh K, et al. Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination. J Biomed Opt. 2012;17(8):081418.

Vendrell M, Maiti KK, Dhaliwal K, Chang YT. Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol. 2013;31(4):249-57.

Zhou Y, Liu CH, Sun Y, Pu Y, Boydston-White S, Liu Y, Alfano RR, et al., Human brain cancer studied by resonance Raman spectroscopy. J Biomed Opt. 2012;17(11):116021.

Lin WC, Sandberg DI, Bhatia S, Johnson M, Oh S, Ragheb J. Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection. J Biomed Opt. 2010 Nov-;15(6):061709.

Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg. 2000; 93: 1003–13.

Shinoda J, Yano H, Yoshimura S, Okumura A, Kaku Y, Iwama T, Sakai N. Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium: technical note. J Neurosurg. 2003;99(3):597-603.

Toms SA, Lin WC, Weil RJ, Johnson MD, Jansen ED, Mahadevan-Jansen A. Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity. Neurosurgery. 2005;57(4 Suppl):382-91.

Kumar AJ, Leeds NE, Fuller GN, Van Tassel P, Maor MH, Sawaya RE, Levin VA. Malignant Gliomas: MR Imaging Spectrum of Radiation Therapy- and Chemotherapy-induced Necrosis of the Brain after Treatment. Radiology 2000;217:377-84.

Stokkel M, Stevens H, Taphoorn M, Van Rijk P. Differentiation between recurrent brain tumour and post-radiation necrosis: The value of 201T1 SPET versus l8F-FDG PET using a dual-headed coincidence camera-a pilot study. Nucl Med Commun. 1999 ;20(5):411-8.

Kahn D, Follett KA, Bushnell DL, Nathan MA, Piper JG, Madsen M, et al. Diagnosis of recurrent brain tumor: value of 201Tl SPECT vs 18F-fluorodeoxyglucose PET. AJR Am J Roentgenol. 1994 ;163(6):1459-65.

Rock JP, Hearshen D, Scarpace L, Croteau D, Gutierrez J, Fisher JL, et al., Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery. 2002; 51(4): 912-20.

Lin WC, Mahadevan-Jansen A, Johnson MD, Weil RJ, Toms SA. In vivo optical spectroscopy detects radiation damage in brain tissue. Neurosurgery. 2005; 57(3): 518-25.

O'Neal PD, Motamedi M, Lin WC, Chen J, Coté GL. Feasibility study using surface-enhanced Raman spectroscopy for the quantitative detection of excitatory amino acids. J Biomed Opt. 2003;8(1):33-9.

Ajito K, Han C, Torimitsu K. Detection of glutamate in optically trapped single nerve terminals by Raman spectroscopy. Anal Chem. 2004 ;76(9):2506-10.

Saks VA, Veksler VI, Kuznetsov AV, Kay L, Sikk P, Tiivel T, et al. Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo, in Bioenergetics of the Cell: Quantitative Aspects. Mol Cell Biochem. 1998 ;184(1-2):81-100.

Soldani C, Scovassi AI. Poly (ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis. 2002; 7(4): 321-28.

DOI: https://doi.org/10.22037/jlms.v6i2.7660