• Logo
  • SBMUJournals

The Highlighted Role of GAPDH and Nitric-Oxide Synthase Regulator Activity in Proton Beam Irradiated Melanoma BLM Cells

Mohammad Mehdi Zadeh-Esmaeel, Shabnam Shahrokh, Mona Zamanian Azodi, Nayebali Ahmadi




Introduction: Human melanoma is a type of invasive tumor that its treatments is challenging. To better understand the proton irradiation mechanisms as one of the widely applied therapy for this type of cancer, bioinformatics analysis of proteomics outcome could be beneficial.

Methods: Protein-protein interaction network analysis of differentially expressed proteins (DEPs) of melanoma BLM (BRO Lung Metastasis) cells in the treatment of 3 Gy dosage proton therapy is performed in this study via Cytoscape V.3.7.2. and its integrated plug-ins.

Results: A number of 18 DEPs were searched for network constructions and limited numbers of (query +neighbor proteins) were found central. The hub-bottlenecks or in the other words, central nodes were GAPDH, ACTB, ALB, AKT1, TP53, and EGFR. The fist mentioned proteins is from DEPs. Enrichment analysis of these elements identified as nitric-oxide synthase regulator activity and positive regulation of norepinephrine uptake that may be key in the mechanisms of proton therapy.

Conclusion: In conclusion, the identified central nodes (EGFR, TP53, ALB, AKT1, GAPDH, and ACTB) and the related biological terms consist with the nature of melanoma and also radiation effects. 


Human melanoma; Radiation; Network analysis; Biological process


Shain AH, Bagger MM, Yu R, Chang D, Liu S, Vemula S, et al. The genetic evolution of metastatic uveal melanoma. Nat Genet. 2019;51(7):1123-30. doi: 10.1038/s41588-019-0440-9.

Angi M, Kalirai H, Prendergast S, Simpson D, Hammond DE, Madigan MC, et al. In-depth proteomic profiling of the uveal melanoma secretome. Oncotarget. 2016;7(31):49623-35. doi: 10.18632/oncotarget.10418.

Wang F, Bing Z, Zhang Y, Ao B, Zhang S, Ye C, et al. Quantitative proteomic analysis for radiation-induced cell cycle suspension in 92-1 melanoma cell line. J Radiat Res. 2013;54(4):649-62. doi: 10.1093/jrr/rrt010.

Kedracka-Krok S, Jankowska U, Elas M, Sowa U, Swakon J, Cierniak A, et al. Proteomic analysis of proton beam irradiated human melanoma cells. PLoS One. 2014;9(1):e84621. doi: 10.1371/journal.pone.0084621.

Verma V, Mehta MP. Clinical Outcomes of Proton Radiotherapy for Uveal Melanoma. Clin Oncol (R Coll Radiol). 2016;28(8):e17-e27. doi: 10.1016/j.clon.2016.01.034.

Levin W, Kooy H, Loeffler J, DeLaney T. Proton beam therapy. Br J Cancer. 2005;93(8):849-54. doi: 10.1038/sj.bjc.6602754.

Jasińska-Konior K, Pochylczuk K, Czajka E, Michalik M, Romanowska-Dixon B, Swakoń J, et al. Proton beam irradiation inhibits the migration of melanoma cells. PloS One. 2017;12(10):e0186002. doi: 10.1371/journal.pone.0186002.

Rostami-Nejad M, Rezaei-Tavirani M, Zadeh-Esmaeel MM, Rezaei-Tavirani S, Akbari Z, Esmaeili S, et al. Assessment of cytokine-mediated signaling pathway dysregulation in arm skin after CO2 laser therapy. J Lasers Med Sci. 2019;10(4):257-63. doi: 10.22037/jlms.v10i4.26591.

Rezaei-Tavirani M, Mansouri V, Tavirani MR, Rostami-Nejad M, Bashash D, Azodi MZ. Gene and Biochemical Pathway Evaluation of Burns Injury via Protein-Protein Interaction Network Analysis. Galen Medical Journal. 2019;8:1257. doi: 10.31661/gmj.v8i0.1257.

Rezaei-Tavirani M, Rezaei Tavirani M, Akbari Z, Hajimehdipoor H. Prediction of coffee effects in rats with healthy and NAFLD conditions based on protein-protein interaction network analysis. Research Journal of Pharmacognosy. 2019;6(4):7-15. doi: 10.22127/rjp.2019.93500.

Rezaei Tavirani M, Rezaei Tavirani S, Zadeh-Esmaeel MM, Ahmadi NA. Introducing Critical Pain-related Genes: A System Biology Approach. Basic and Clinical Neuroscience. 2019;10(4):401-8. doi: 10.32598/bcn.9.10.310.

Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27(3):431-2. doi: 10.1093/bioinformatics/btq675.

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607-D613. doi: 10.1093/nar/gky1131.

Assenov Y, Ramírez F, Schelhorn SE, Lengauer T, Albrecht M. Computing topological parameters of biological networks. Bioinformatics. 2008;24(2):282-4. doi: 10.1093/bioinformatics/btm554.

Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091-3. doi: 10.1093/bioinformatics/btp101.

Safari-Alighiarloo N, Taghizadeh M, Rezaei-Tavirani M, Goliaei B, Peyvandi AA. Protein-protein interaction networks (PPI) and complex diseases. Gastroenterol Hepatol Bed Bench. 2014;7(1):17-31. doi: 10.22037/ghfbb.v7i1.511.

Rezaei-Tavirani M, Rezaei-Tavirani S, Mansouri V, Rostami-Nejad M, Rezaei-Tavirani M. Protein-protein interaction network analysis for a biomarker panel related to human esophageal adenocarcinoma. Asian Pac J Cancer Prev. 2017;18(12):3357-63. doi: 10.22034/APJCP.2017.18.12.3357.

Rezaei-Tavirani M, Rezaei-Tavirani S, Ahmadi N, Naderi N, Abdi S. Pancreatic adenocarcinoma protein-protein interaction network analysis. Gastroenterol Hepatol Bed Bench. 2017;10(1):S85-S92. doi: 10.22037/ghfbb.v0i0.1265.

Tavirani MR, Mansouri V, Tavirani SR, Tackallou SH, Rostami-Nejad M. Gliosarcoma protein-protein interaction network analysis and gene ontology. Int J Cancer Manag. 2018;11(5):e65701.doi: 10.5812/ijcm.65701.

Barber RD, Harmer DW, Coleman RA, Clark BJ. GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics. 2005;21(3):389-95. doi: 10.1152/physiolgenomics.00025.2005.

Delunardo F, Soldati D, Bellisario V, Berry A, Camerini S, Crescenzi M, et al. Anti‐GAPDH Autoantibodies as a Pathogenic Determinant and Potential Biomarker of Neuropsychiatric Diseases. Arthritis Rheumatol. 2016;68(11):2708-16. doi: 10.1002/art.39750.

Tristan C, Shahani N, Sedlak TW, Sawa A. The diverse functions of GAPDH: views from different subcellular compartments. Cell Signal. 2011;23(2):317-23. doi: 10.1016/j.cellsig.2010.08.003.

Guo C, Liu S, Sun MZ. Novel insight into the role of GAPDH playing in tumor. Clin Transl Oncol. 2013;15(3):167-72. doi: 10.1007/s12094-012-0924-x.

Dong Z, Staroselsky AH, Qi X, Xie K, Fidler IJ. Inverse correlation between expression of inducible nitric oxide synthase activity and production of metastasis in K-1735 murine melanoma cells. Cancer Res. 1994;54(3):789-93.

Andrew P, Harant H, Lindley I. Nitric oxide regulates IL-8 expression in melanoma cells at the transcriptional level. Biochem Biophys Res Commun. 1995;214(3):949-56. doi: 10.1006/bbrc.1995.2378.

Gonçalves DA, Xisto R, Gonçalves JD, da Silva DB, Soares JPM, Icimoto MY, et al. Imbalance between nitric oxide and superoxide anion induced by uncoupled nitric oxide synthase contributes to human melanoma development. Int J Biochem Cell Biol. 2019;115:105592. doi: 10.1016/j.biocel.2019.105592.

Valles SL, Benlloch M, Rodriguez ML, Mena S, Pellicer JA, Asensi M, et al. Stress hormones promote growth of B16-F10 melanoma metastases: an interleukin 6-and glutathione-dependent mechanism. J Transl Med. 2013;11(1):72. doi: 10.1186/1479-5876-11-72.

DOI: https://doi.org/10.22037/jlms.v10i4.27769