• Logo
  • SBMUJournals

The Effect of Photobiomodulation Therapy on the Differentiation, Proliferation, and Migration of the Mesenchymal Stem Cell: A Review

Behnaz Ahrabi, Mostafa Rezaee Tavirani, Maryam Sadat Khoramgah, Mohsen Noroozian, Shahram Darabi, Shahrokh Khoshsirat, Hojjat-allah Abbaszadeh
73

Views

PDF

Abstract

Introduction: The purpose of this study is to investigate the effect of a low-power laser on the proliferation, migration, differentiation of different types of mesenchymal stem cells (MSCs) in different studies.

Methods: The relevant articles that were published from 2004 to 2019 were collected from the sources of PubMed, Scopus, and only the articles specifically examining the effect of a low-power laser on the proliferation, differentiation, and migration of the MSCs were investigated.

Results: After reviewing the literature, only 42 articles were found relevant. Generally, most of the studies demonstrated that different laser parameters increased the proliferation, migration, and differentiation of the MSCs, except the results of two studies which were contradictory. In fact, changing the parameters of a low-power laser would affect the results. On the other hand, the source of the stem cells was reported as a key factor. In addition, the combination of lasers with other therapeutic approaches was found to be more effective.

Conclusion: The different parameters of lasers has been found to be effective in the proliferation, differentiation, and migration of the MSCs and in general, a low-power laser has a positive effect on the MSCs, helping to improve different disease models.




Keywords

Photobiomodulation therapy; Differentiation; Proliferation; Migration; Mesenchymal stem cell

References

Hamblin MR, Huang Y. Handbook of Photomedicine. Boca Raton: CRC Press; 2013.

Saadati F, Mahdikia H, Abbaszadeh HA, Abdollahifar MA, Khoramgah MS, Shokri B. Comparison of direct and indirect cold atmospheric-pressure plasma methods in the B 16 F 10 melanoma cancer cells treatment. Sci Rep. 2018;8(1):7689.

Zarei M, Wikramanayake TC, Falto-Aizpurua L, Schachner LA, Jimenez JJ. Low level laser therapy and hair regrowth: an evidence-based review. Lasers Med Sci. 2016;31(2):363-71. doi: 10.1007/s10103-015-1818-2.

Kim K, Lee J, Jang H, Park S, Na J, Myung JK, et al. Photobiomodulation Enhances the Angiogenic Effect of Mesenchymal Stem Cells to Mitigate Radiation-Induced Enteropathy. Int J Mol Sci. 2019;20(5): 1131. doi: 10.3390/ijms20051131.

Liao X, Li SH, Xie GH, Xie S, Xiao LL, Song JX, et al. Preconditioning With Low‐Level Laser Irradiation Enhances the Therapeutic Potential of Human Adiposederived Stem Cells in a Mouse Model of Photoaged Skin. Photochem Photobiol. 2018;94(4):780-90. doi: 10.1111/php.12912.

Han B, Fan J, Liu L, Tian J, Gan C, Yang Z, et al. Adiposederived mesenchymal stem cells treatments for fibroblasts of fibrotic scar via downregulating TGF-β1 and Notch-1expression enhanced by photobiomodulation therapy. Lasers Med Sci. 2019;34(1):1-10. doi: 10.1007/s10103-018-2567-9.

Borzabadi-Farahani A. Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; a systemic review. J Photochem Photobiol B. 2016;162:577-82. doi: 10.1016/j.jphotobiol.2016.07.022.

El Gammal ZH, Zaher AM, El-Badri N. Effect of lowlevel laser-treated mesenchymal stem cells on myocardial infarction. Lasers Med Sci. 2017;32(7):1637-46. doi:10.1007/s10103-017-2271-1.

Zecha JA, Raber-Durlacher JE, Nair RG, Epstein JB, Sonis ST, Elad S, et al. Low level laser therapy/photobiomodulation

in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations. Support Care Cancer. 2016;24(6):2781-92. doi: 10.1007/s00520-016-3152-z.

Gao X, Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci. 2009;16(1):4.

Ganjali M, Seifalian AM, Mozafari M. Effect of laser irradiation on cell cycle and mitosis. J Lasers Med Sci. 2018;9(4):249.

Shefer G, Barash I, Oron U, Halevy O. Low-energy laser irradiation enhances de novo protein synthesis via its

effects on translation-regulatory proteins in skeletal muscle myoblasts. Biochim Biophys Acta. 2003;1593(2-3):131-9. doi: 10.1016/s0167-4889(02)00350-6.

Wu YH, Wang J, Gong DX, Gu HY, Hu SS, Zhang H. Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis. Lasers Med Sci. 2012;27(2):509-19. doi: 10.1007/s10103-011-0995-x.

Deng C, Liu G. The PI3K/Akt signalling pathway plays essential roles in mesenchymal stem cells. Br Biomed Bull. 2017;5(2):301.

Chen CH, Hung HS, Hsu SH. Low‐energy laser irradiation increases endothelial cell proliferation, migration, and eNOS gene expression possibly via PI3K signal pathway. Lasers Surg Med. 2008;40(1):46-54. doi: 10.1002/lsm.20589.

Szymczyszyn A, Doroszko A, Szahidewicz-Krupska E, Rola P, Gutherc R, Jasiczek J, et al. Effect of the transdermal lowlevel

laser therapy on endothelial function. Lasers Med Sci. 2016;31(7):1301-7. doi: 10.1007/s10103-016-1971-2.

Araújo TG, Oliveira AG, Franchi Teixeira AR. Low-Power Laser Irradiation (LPLI): a clinical point of view on a promising strategy to improve liver regeneration. J Lasers Med Sci. 2018;9(4):223-7. doi: 10.15171/jlms.2018.40.

Braun DC, Garfield SH, Blumberg PM. Analysis by fluorescence resonance energy transfer of the interaction between ligands and protein kinase Cδ in the intact cell. J Biol Chem. 2005;280(9):8164-71. doi: 10.1074/jbc. M413896200.

Zhang J, Xing D, Gao X. Low‐power laser irradiation activates Src tyrosine kinase through reactive oxygen species‐mediated signaling pathway. J Cell Physiol. 2008;217(2):518-28. doi: 10.1002/jcp.21529.

Yin K, Zhu R, Wang S, Zhao RC. Low-level laser effect on proliferation, migration, and antiapoptosis of mesenchymal stem cells. Stem Cells Dev. 2017;26(10):762-75. doi:10.1089/scd.2016.0332.

Rai V. Role of Reactive Oxygen Species in Low-Level Laser Therapy. Handbook of Low-Level Laser Therapy. Pan Stanford; 2016. p. 177-200.

Kerdari M, Behnam GH, Farhadi M, Masoumipoor M, Hassanzadeh S, Soleimani M, et al. Effects of 660nm Low-Level Laser Therapy on P2X3 Expression of Lumbar DRG of Adult Male Rats with Neuropathic Pain. Int Clin Neurosci J. 2016;3(4):193-200. doi: 10.22037/icnj.v3i4.16119.

Wang L, Wu F, Liu C, Song Y, Guo J, Yang Y, et al. Lowlevel laser irradiation modulates the proliferation and the osteogenic differentiation of bone marrow mesenchymal stem cells under healthy and inflammatory condition. Lasers Med Sci. 2019;34(1):169-78. doi: 10.1007/s10103-018-2673-8.

Ferreira-Silva V, Primo FL, Baqui MMA, Magalhães DAR, Orellana MD, Castilho-Fernandes A, et al. Beneficial role of low-intensity laser irradiation on neural β-tubulin III protein expression in human bone marrow multipotent mesenchymal stromal cells. Stem Cell Rev Rep. 2018;14(4):585-98. doi: 10.1007/s12015-017-9796-3.

Chen H, Wu H, Yin H, Wang J, Dong H, Chen Q, et al. Effect of photobiomodulation on neural differentiation of human umbilical cord mesenchymal stem cells. Lasers Med Sci. 2019;34(4):667-75. doi: 10.1007/s10103-018-2638-y.

Chen H, Wang H, Li Y, Liu W, Wang C, Chen Z. Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells. AIP Advances. 2016;6(4):045018. doi: 10.1063/1.4948442.

de Lima RDN, Vieira SS, Antonio EL, Camillo de Carvalho PT, de Paula Vieira R, Mansano BSDM, et al. Low-level laser therapy alleviates the deleterious effect of doxorubicin on rat adipose tissue-derived mesenchymal stem cells. J Photochem Photobiol B. 2019;196:111512. doi: 10.1016/j.jphotobiol.2019.

Lucke LD, Bortolazzo FO, Theodoro V, Fujii L, Bombeiro AL, Felonato M, et al. Low‐level laser and adipose‐derived stem cells altered remodelling genes expression and improved collagen reorganization during tendon repair. Cell Prolif. 2019;52(3):e12580. doi: 10.1111/cpr.12580.

Park IS, Chung PS, Ahn JC, Leproux A. Human adiposederived stem cell spheroid treated with photobiomodulation irradiation accelerates tissue regeneration in mouse model of skin flap ischemia. Lasers Med Sci. 2017;32(8):1737-46.

doi: 10.1007/s10103-017-2239-1.

Park IS, Chung PS, Ahn JC. Angiogenic synergistic effect of adipose-derived stromal cell spheroids with low-level light therapy in a model of acute skin flap ischemia. Cells Tissues Organs. 2016;202(5-6):307-18. doi: 10.1159/000445710.

Park IS, Chung PS, Ahn JC. Enhancement of ischemic wound healing by spheroid grafting of human adiposederived stem cells treated with low-level light irradiation. PLoS One. 2015;10(6):e0122776. doi: 10.1371/journal. pone.0122776.

Nurković J, Zaletel I, Nurković S, Hajrović Š, Mustafić F, Isma J, et al. Combined effects of electromagnetic field and low-level laser increase proliferation and alter the morphology of human adipose tissue-derived mesenchymal stem cells. Lasers Med Sci. 2017;32(1):151-60. doi: 10.1007/s10103-016-2097-2.

Mvula B, Abrahamse H. Differentiation potential of adipose-derived stem cells when cocultured with smooth muscle cells, and the role of low-intensity laser irradiation. Photomed Laser Surg. 2016;34(11):509-15. doi: 10.1089/pho.2015.3978.

Barboza CAG, Ginani F, Soares DM, Henriques ÁCG, Freitas Rde A. Low-level laser irradiation induces in vitro proliferation of mesenchymal stem cells. Einstein (Sao Paulo). 2014;12(1):75-81. doi:10.1590/S1679-45082014AO2824.

Park IS, Chung PS, Ahn JC. Enhanced angiogenic effect of adipose-derived stromal cell spheroid with low-level light therapy in hind limb ischemia mice. Biomaterials. 2014;35(34):9280-9. doi: 10.1016/j. biomaterials.2014.07.061.

Choi K, Kang BJ, Kim H, Lee S, Bae S, Kweon OK, et al. Low‐level laser therapy promotes the osteogenic potential of adipose‐derived mesenchymal stem cells seeded on an acellular dermal matrix. J Biomed Mater Res B Appl Biomater. 2013;101(6):919-28. doi: 10.1002/jbm.b.32897.

Castilho-Fernandes A, Lopes TG, Ferreira FU, Rezende N, Silva VF, Primo FL, et al. Adipogenic differentiation of murine bone marrow mesenchymal stem cells induced by visible light via photo-induced biomodulation. Photodiagnosis Photodyn Ther. 2019;25:119-27. doi:10.1016/j.pdpdt.2018.11.013.

Sefati N, Abbaszadeh HA, Fathabady FF, Abdollahifar MA, Khoramgah MS, Darabi S, et al. The combined effects of mesenchymal stem cell conditioned media and low-level laser on stereological and biomechanical parameter in hypothyroidism rat model. J Lasers Med Sci. 2018;9(4):243.

AlGhamdi KM, Kumar A, Moussa NA. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. J Lasers Med Sci. 2012;27(1):237-49.

Fallahnezhad S, Piryaei A, Tabeie F, Nazarian H, Darbandi H, Amini A, et al. Low-level laser therapy with helium– neon laser improved viability of osteoporotic bone marrowderived mesenchymal stem cells from ovariectomy-induced osteoporotic rats. J Biomed Opt. 2016;21(9):098002 . doi:10.1117/1.JBO.21.9.098002.

Amaroli A, Agas D, Laus F, Cuteri V, Hanna R, Sabbieti MG, et al. The effects of photobiomodulation of 808 nm diode laser therapy at higher fluence on the in vitro osteogenic differentiation of bone marrow stromal cells. Front Physiol. 2018;9:123. doi: 10.3389/fphys.2018.00123.

Tuby H, Maltz L, Oron U. Implantation of low-level laser irradiated mesenchymal stem cells into the infarcted rat heart is associated with reduction in infarct size and enhanced angiogenesis. Photomed Laser Surg. 2009;27(2):227-33. doi: 10.1089/pho.2008.2272.

Leonida A, Paiusco A, Rossi G, Carini F, Baldoni M, Caccianiga G. Effects of low-level laser irradiation on proliferation and osteoblastic differentiation of human mesenchymal stem cells seeded on a threedimensional biomatrix: in vitro pilot study. Lasers Med Sci. 2013;28(1):125-32. doi: 10.1007/s10103-012-1067-6.

Wu JY, Wang YH, Wang GJ, Ho ML, Wang CZ, Yeh ML, et al. Low-power GaAlAs laser irradiation promotes the proliferation and osteogenic differentiation of stem cells via IGF1 and BMP2. PloS One. 2012;7(9):e44027. doi: 10.1371/journal.pone.0044027.

Tuby H, Maltz L, Oron U. Low‐level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med. 2007;39(4):373-8. doi: 10.1002/lsm.20492.

Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS. In vitro effects of low‐level laser irradiation for bone marrow mesenchymal stem cells: Proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med. 2008;40(10):726-33. doi: 10.1002/lsm.20709.

Cavalcanti MF, Maria DA, de Isla N, Leal-Junior EC, Joensen J, Bjordal JM, et al. Evaluation of the proliferative effects induced by low-level laser therapy in bone marrow stem cell culture. Photomed Laser Surg. 2015;33(12):610-6.

doi: 10.1089/pho.2014.3864.

Ahn JC, Rhee YH, Choi SH, Kim DY, Chung PS. Low level light promotes the proliferation and differentiation of bone marrow derived mesenchymal stem cells. In Mechanisms for Low-Light Therapy X; 2015: International Society for Optics and Photonics.

Tuby H, Maltz L, Oron U. Induction of autologous mesenchymal stem cells in the bone marrow by lowlevel laser therapy has profound beneficial effects on the infarcted rat heart. Lasers Surg Med. 2011;43(5):401-9. doi:10.1002/lsm.21063.

Allameh M, Khalesi S, Khozeimeh F, Faghihian E. Comparative evaluation of the efficacy of laser therapy and fibroblastic growth factor injection on mucosal wound healing in rat experimental model. J Lasers Med Sci.2018;9(3):194.

Horvát‐Karajz K, Balogh Z, Kovács V, Drrernat AH, Sréter L, Uher F. In vitro effect of carboplatin, cytarabine, paclitaxel, vincristine, and low‐power laser irradiation on murine mesenchymal stem cells. Lasers Surg Med. 2009;41(6):463-9. doi: 10.1002/lsm.20791.

Bouvet‐Gerbettaz S, Merigo E, Rocca JP, Carle GF, Rochet N. Effects of low‐level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med. 2009;41(4):291-7. doi: 10.1002/lsm.20759.

Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts—an in vitro study. Lasers Med Sci. 2012;27(2):423-30. doi:10.1007/s10103-011-0930-1.

Giannelli M, Chellini F, Sassoli C, Francini F, Pini A, Squecco R, et al. Photoactivation of bone marrow mesenchymal stromal cells with diode laser: effects and mechanisms of action. J Cell Physiol. 2013;228(1):172-81. doi: 10.1002/jcp.24119.

Pinheiro CC, de Pinho MC, Aranha AC, Fregnani E, Bueno DF. Low Power Laser Therapy: A Strategy to Promote the

Osteogenic Differentiation of Deciduous Dental Pulp Stem Cells from Cleft Lip and Palate Patients. Tissue Eng Part A. 2018;24(7-8):569-75. doi: 10.1089/ten.TEA.2017.0115.

Diniz IM, Carreira AC, Sipert CR, Uehara CM, Moreira MS, Freire L, et al. Photobiomodulation of mesenchymal stem cells encapsulated in an injectable rhBMP4‐loaded hydrogel directs hard tissue bioengineering. J Cell Physiol. 2018;233(6):4907-18. doi: 10.1002/jcp.26309.

Gomiero C, Bertolutti G, Martinello T, Van Bruaene N, Broeckx SY, Patruno M, et al. Tenogenic induction of equine mesenchymal stem cells by means of growth factors and low-level laser technology. Vet Res Commun. 2016;40(1):39-48. doi: 10.1007/s11259-016-9652-y.




DOI: https://doi.org/10.22037/jlms.v10i4.26717