• Logo
  • SBMUJournals

Analysis of Laser Therapy Effects on Squamous Cell Carcinoma Patients: A System Biology Study

Vahid Mansouri, Mostafa Rezaei Tavirani, Mohammad Mehdi Zadeh-Esmaeel, Sina Rezaei-Tavirani, Mohammadreza Razzaghi, Farshad Okhovatian, Mohammad Rostami-Nejad, Alireza Ahmadzade
82

Views

PDF

Abstract

Introduction: Mechanism of Laser therapy and also its safety are two important features of application of different types of laser in medicine. Aim of this study is investigating the critical affected genes after treatment of squamous cell carcinoma patients.

Methods: Gene expression profiles of 4 squamous cell carcinoma patients that are treated via chemoradiotherapy plus laser relative to the 3 similar patients without laser exposure from Gene Expression Omnibus (GEO) are downloaded and are screen to find critical genes via network analysis. STRING database, Cytoscape software, and Clue GO plug in of Cytoscape software are used.  

Results: The genes; HSX70 and NCC27 as neighbors and HSPA1B, CLIC1, RAB13, PPIF, and LCE3D were determined as hub genes. Over-expression of LCE3D was interpreted as side effect of laser therapy. Apoptosis and cell cycle were the dominant biological processes that regulated by the HSP molecules in laser treated patients.

Conclusion: Laser was effected the main biological processes and simultaneously issued side effects.

 


Keywords

Keywords: Laser therapy; Squamous cell carcinoma HSPA1B; LCE3D.

References

Arany PR. Craniofacial wound healing with photobiomodulation therapy: new insights and current challenges. J Den Res. 2016;95(9):977-84. doi:10.1177/0022034516648939.

Leal Junior ECP, Lopes-Martins RAB, Dalan F, Ferrari M, Sbabo FM, Generosi RA, et al. Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg. 2008;26(5):419-24. doi: 10.1089/pho.2007.2160.

Ekizer A, Uysal T, Güray E, Akkuş D. Effect of LEDmediated-photobiomodulation therapy on orthodontic tooth movement and root resorption in rats. Lasers Med Sci. 2015;30(2):779-85. doi: 10.1007/s10103-013-1405-3.

Hawkins D, Abrahamse H. Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg. 2006;24(6):705-14. doi: 10.1089/pho.2006.24.705.

Kulekcioglu S, Sivrioglu K, Ozcan O, Parlak M. Effectiveness of low‐level laser therapy in temporomandibular disorder. Scand J Rheumatol. 2003;32(2):114-8. doi:10.1080/03009740310000139.

Zivin JA, Albers GW, Bornstein N, Chippendale T, Dahlof B, Devlin T, et al. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke. 2009;40(4):1359-64. doi: 10.1161/STROKEAHA.109.547547.

Karu TI. Molecular mechanism of the therapeutic effect of low-intensity laser radiation. Lasers Life Sci. 1988;2(1):53-74.

Gao X, Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci. 2009;16(1):4. doi:10.1186/1423-0127-16-4.

Smith KC. The photobiological basis of low level laser radiation therapy. Laser Ther. 1991;3(1):19-24. doi:10.5978/islsm.91-OR 03.

Nomura K, Yamaguchi M, Abiko Y. Inhibition of interleukin-1β production and gene expression in human gingival fibroblasts by low-energy laser irradiation. Lasers Med Sci. 2001;16(3):218-23. doi: 10.1007/PL00011358.

Gavish L, Perez L, Gertz SD. Low‐level laser irradiation modulates matrix metalloproteinase activity and gene expression in porcine aortic smooth muscle cells. Lasers Surg Med. 2006;38(8):779-86. doi: 10.1002/lsm.20383.

Safaei A, Rezaei Tavirani M, Zamanian Azodi M, Lashay A, Mohammadi SF, Ghasemi Broumand M, et al. Diabetic retinopathy and laser therapy in rats: A proteinprotein interaction network analysis. J Lasers Med Sci. 2017;8(1):S20-S21. doi: 10.15171/jlms.2017.s4.

Rezaei-Tavirani M, Rezaei Tavirani M, Zamanian Azodi M, Razzaghi M, Moravvej Farshi H. Evaluation of skin response after erbium: yttrium–aluminum–garnet laser irradiation: a network analysis approach. J Lasers Med Sci. 2019;10(3):194-99. doi: 10.22037/jlms.v10i3.24698.

Santolini M, Barabási AL. Predicting perturbation patterns from the topology of biological networks. Proc Natl Acad Sci USA. 2018;115(27):E6375-E83. doi: 10.1073/ pnas.1720589115.

Albert R, Barabási AL. Statistical mechanics of complex networks. Rev Mod Phys. 2002;74(1):47-97. doi: 10.1103/ RevModPhys.74.47.

Safari-Alighiarloo N, Taghizadeh M, Rezaei-Tavirani M, Goliaei B, Peyvandi AA. Protein-protein interaction networks (PPI) and complex diseases. Gastroenterol Hepatol Bed Bench. 2014;7(1):17-31. doi: 10.22037/ghfbb.v7i1.511.

Khayer N, Zamanian-Azodi M, Mansouri V, Ghassemi- Broumand M, Rezaei-Tavirani M, Heidari MH, et al. Oral squamous cell cancer protein-protein interaction network interpretation in comparison to esophageal adenocarcinoma. Gastroenterol Hepatol Bed Bench. 2017;10(2):118-24. doi: 10.22037/ghfbb.v0i0.1119.

Antunes HS, Wajnberg G, Pinho MB, Jorge NAN, de Moraes JLM, Stefanoff CG, et al. cDNA microarray analysis of human keratinocytes cells of patients submitted to chemoradiotherapy and oral photobiomodulation therapy: pilot study. Lasers Med Sci. 2018;33(1):11-18. doi: 10.1007/s10103-017-2313-8.

Razick S, Magklaras G, Donaldson IM. iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics. 2008;9(1):405. doi: 10.1186/1471-2105-9-405.

Ito Y, Ando A, Ando H, Ando J, Saijoh Y, Inoko H, et al. Genomic structure of the spermatid-specific hsp70 homolog gene located in the class III region of the major histocompatibility complex of mouse and man. J Biochem. 1998;124(2):347-53. doi: 10.1093/oxfordjournals.jbchem. a022118.

Jeng JE, Tsai JF, Chuang LY, Ho MS, Lin ZY, Hsieh MY, et al. Heat shock protein A1B 1267 polymorphism is highly

associated with risk and prognosis of hepatocellular carcinoma: a case-control study. Medicine (Baltimore). 2008;87(2):87-98. doi: 10.1097/MD.0b013e31816be95c.

Milner CM, Campbell RD. Structure and expression of the three MHC-linked HSP70 genes. Immunogenetics. 1990;32(4):242-51. doi: 10.1007/bf00187095.

Karoly E, Fekete A, Banki NF, Szebeni B, Vannay A, Szabo AJ, et al. Heat shock protein 72 (HSPA1B) gene polymorphism and Toll-like receptor (TLR) 4 mutation are associated with increased risk of urinary tract infection in children. Pediatr Res. 2007;61(3):371-4. doi: 10.1203/ pdr.0b013e318030d1f4.

Gombos T, Förhécz Z, Pozsonyi Z, Jánoskuti L, Prohászka Z. Interaction of serum 70-kDa heat shock protein levels and HspA1B (+ 1267) gene polymorphism with disease severity in patients with chronic heart failure. Cell Stress Chaperones. 2008;13(2):199-206. doi: 10.1007/s12192-007-0001-5.

Clarimón J, Bertranpetit J, Boada M, Tàrraga L, Comas D. HSP70-2 (HSPA1B) is associated with noncognitive symptoms in late-onset Alzheimer’s disease. J Geriatr Psychiatry Neurol. 2003;16(3):146-50. doi:10.1177/0891988703256051.

Schröder O, Schulte K-M, Ostermann P, Röher HD, Ekkernkamp A, Laun RA. Heat shock protein 70 genotypes HSPA1B and HSPA1L influence cytokine concentrations and interfere with outcome after major injury. Crit Care Med. 2003;31(1):73-9. doi: 10.1097/00003246-200301000-00011.

Harrison PJ, Procter AW, Exworthy T, Roberts GW, Najlerahim A, Barton AJ, et al. Heat shock protein (hsx70) mRNA expression in human brain: effects of neurodegenerative disease and agonal state. Neuropathol Appl Neurobiol. 1993;19(1):10-21. doi: 10.1111/j.1365-2990.1993.tb00400.x.

Oka N, Akiguchi I, Nagao M, Nishio T, Kawasaki T, Kimura J. Expression of endothelial leukocyte adhesion molecule‐1 (ELAM‐1) in chronic inflammatory demyelinating polyneuropathy. Neurology. 1994;44(5):946-50. doi:10.1212/wnl.44.5.946.

Xianfa T, Min L, Chengyao Z. Correlation of rs4085613 polymorphism within the late cornified envelope 3D gene with some clinical features of psoriasis vulgaris in Chinese Han population. Acta Universitatis Medicinalis Anhui. 2009;(3)17:337-340.

Shen C, Gao J, Yin X, Sheng Y, Sun L, Cui Y, et al. Association of the late cornified envelope-3 genes with psoriasis and

psoriatic arthritis: a systematic review. J Genet Genomics. 2015;42(2):49-56. doi: 10.1016/j.jgg.2015.01.001.

Titova LV, Ayesheshim AK, Golubov A, Rodriguez-Juarez R, Woycicki R, Hegmann FA, et al. Intense THz pulses

down-regulate genes associated with skin cancer and psoriasis: a new therapeutic avenue? Sci Rep. 2013;3:2363. doi: 10.1038/srep02363.

Chen CD, Wang CS, Huang YH, Chien KY, Liang Y, Chen WJ, et al. Overexpression of CLIC1 in human gastric carcinoma

and its clinicopathological significance. Proteomics. 2007;7(1):155-67. doi: 10.1002/pmic.200600663.




DOI: https://doi.org/10.22037/jlms.v10i4.26693