• Logo
  • SBMUJournals

The Efficacy of Photodynamic Inactivation of the Diode Laser in Inactivation of the Candida albicans Biofilms With Exogenous Photosensitizer of Papaya Leaf Chlorophyll

Suryani Dyah Astuti, Ir Suhariningsih, Afaf Baktir, Sri Dewi Astuty




Introduction: N Photodynamic inactivation has been developed to kill pathogenic microbes. In addition, some techniques have been introduced to minimize the biofilm resistance to antifungal properties in inhibiting cell growth. The principle of photodynamic inactivation different to antifungal drugs therapy which is resistant to biofilms. The presence of reactive oxygen species (ROS) that generating in photodynamic inactivation mechanisms can be damaging of biofilm cells and the principle of light transmission that could be penetrating in matrix layers of extracellular polymeric substance (EPS) until reaching the target cells at the base layers of biofilm. The present work aims to explore the potential of chlorophyll extract of papaya leaf as an exogenous photosensitizer to kill the Candida albicans biofilms after being activated by the laser. The potential of chlorophyll photosensitizer was evaluated based on the efficacy of inactivation C. albicans biofilm cell through a cell viability test and an organic compound test.

Methods: The treatment of photoinactivation was administered to 12 groups of C. albicans biofilm for four days using the 445 nm laser and the 650 nm laser. The 445 nm and 650 nm lasers activated the chlorophyll extract of the papaya leaf (0.5 mg/L) at the same energy density. The energy density variation was determined as 5, 10, 20, 30 and 40 J/cm2 with the duration of exposure of each laser adjusted to the absorbance percentage of chlorophyll extract of the papaya leaf.

Results: The absorbance percentage of chlorophyll extracts of the papaya leaf on wavelengths of 650 nm and 445 nm respectively were 22.26% and 60.29%, respectively. The most effective treated group was a group of the laser with the addition of chlorophyll, done by the 650 nm lasers with inactivation about 32% (P = 0.001), while the 445 nm lasers only 25% (P = 0.061). The maximum malondialdehyde levels by treatment of the laser 650 nm were (0.046±0.004) nmol/mg.

Conclusion: The use of chlorophyll extract of the papaya leaf as a photosensitizer, resulted in the maximum spectrum of absorption at 414 nm and 668 nm, which produced a maximum reduction effect after photoinactivation up to 32% (with chlorophyll) and 25% (without chlorophyll). The utilization of chlorophyll extract of the papaya leaf would increase the antifungal effects with the activation by the diode laser in the biofilm of C. albicans.
Keywords: Candida albicans biofilms; Chlorophyll extract; Photoinactivation


Candida albicans biofilms; Chlorophyll extract; Photoinactivation.


Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119-128.doi:10.4161/viru.22913

Williams D, Lewis M. Pathogenesis and treatment of oral candidosis. J Oral Microbiol. 2011;3. doi:10.3402/jom.v3i0.5771

Tsui C, Kong EF, Jabra-Rizk MA. Pathogenesis of Candida albicans biofilm. Pathog Dis. 2016;74(4):ftw018. doi:10.1093/femspd/ftw018

Baktir A, Suwito H, Safinah M, Kunsah B. Novel Materials for Eradication of Biofilm Extracell Matrix of Pathogenic Candida. J Mater Sci Eng B. 2012;2(12):650-658.

Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol. 2011;9(2):109- 118. doi:10.1038/nrmicro2475

Al-Fattani MA, Douglas LJ. Penetration of Candida biofilms by antifungal agents. Antimicrob Agents Chemother. 2004;48(9):3291-3297. doi:10.1128/aac.48.9.3291-3297.2004

Dai T, Huang YY, Hamblin MR. Photodynamic therapy for localized infections--state of the art. Photodiagnosis

Photodyn Ther. 2009;6(3-4):170-188. doi:10.1016/j. pdpdt.2009.10.008

St Denis TG, Hamblin MR. Synthesis, bioanalysis and biodistribution of photosensitizer conjugates for photodynamic therapy. Bioanalysis. 2013;5(9):1099-1114. doi:10.4155/bio.13.37

Dai T, Fuchs BB, Coleman JJ, et al. Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Front Microbiol. 2012;3:120. doi:10.3389/fmicb.2012.00120

Calzavara-Pinton P, Rossi MT, Sala R, Venturini M. Photodynamic antifungal chemotherapy. Photochem Photobiol. 2012;88(3):512-522. doi:10.1111/j.1751-1097.2012.01107.x

Pereira CA, Romeiro RL, Costa AC, Machado AK, Junqueira JC, Jorge AO. Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study. Lasers Med Sci. 2011;26(3):341-348. doi:10.1007/s10103-010-0852-3

Zoric N, Horvat I, Kopjar N, et al. Hydroxytyrosol expresses antifungal activity in vitro. Curr Drug Targets.

;14(9):992-998. doi:10.2174/13894501113149990167

Lovric J, Mesic M, Macan M, Koprivanac M, Kelava M, Bradamante V. Measurement of malondialdehyde (MDA) level in rat plasma after simvastatin treatment using two different analytical methods. Period Biol. 2008;110(1):63-67.

Astuti SD, Arifianto D, Drantantiyas NDG, Nasution AMT, Abdurachman. Efficacy of CNC-diode laser combine with chlorophylls to eliminate staphylococcus aureus biofilm. Presented at: International Seminar Sensors, Instrumentation, Measurement, and Metrology (ISSIMM); 5 January 2017; doi:10.1109/ISSIMM.2016.7803722

Budiyanto AW, Notosudarmo S, Limantara L. Pengaruh Pengasaman terhadap Fotodegradasi Klorofil a. Jurnal Matematika dan Sains. 2008;13(3):66-75.

Pirenantyo P, Limantara L. Pigmen spirulina sebagai senyawa antikanker. Indonesian Journal of Cancer. 2008;2(4):155-163. doi:10.33371/ijoc.v2i4.61

Astuty SD, Baktir A. The effectiveness of laser diode induction to Carica papaya L. chlorophyll extract to be ROS generating in the photodynamic inactivation mechanisms for C.albicans biofilms. J Phys Conf Ser. 2017;853(1):012026. doi:10.1088/1742-6596/853/1/012026

Setiawatie EM, Astuti SD, Zaidan AH. An in vitro Antimicrobial Photodynamic Therapy (aPDT) with Blue LEDs to Activate Chlorophylls of Alfalfa Medicago sativa L on Aggregatibacter actinomycetemcomitans. J Int Dent Med Res. 2016;9(2);118-125.

Setiari N, Nurchayati Y. Eksplorasi kandungan klorofil pada beberapa sayuran hijau sebagai alternatif bahan dasar food supplement. Bioma. 2009;11(1):6-10. doi:10.14710/ bioma.11.1.6-10

Maulana E, Pramono SH, Fanditya D, Julius M. Effect of chlorophyll concentration variations from extract of papaya leaves on dye-sensitized solar cell. International Journal of Electrical and Computer Engineering. 2015;9(1):49-52.

Pierce CG, Uppuluri P, Tummala S, Lopez-Ribot JL. A 96 well microtiter plate-based method for monitoring formation and antifungal susceptibility testing of Candida albicans biofilms. J Vis Exp. 2010(44). doi:10.3791/2287

Junqueira JC, Jorge AO, Barbosa JO, et al. Photodynamic inactivation of biofilms formed by Candida spp., Trichosporon mucoides, and Kodamaea ohmeri by cationic nanoemulsion of zinc 2,9,16,23-tetrakis(phenylthio)- 29H, 31H-phthalocyanine (ZnPc). Lasers Med Sci. 2012;27(6):1205-1212. doi:10.1007/s10103-012-1050-2

Pinto AP, Rosseti IB, Carvalho ML, da Silva BGM, Alberto-Silva C, Costa MS. Photodynamic Antimicrobial Chemotherapy (PACT), using Toluidine blue O inhibits the viability of biofilm produced by Candida albicans at different stages of development. Photodiagnosis Photodyn Ther. 2018;21:182-189. doi:10.1016/j.pdpdt.2017.12.001

de Oliveira BP, Lins CC, Diniz FA, Melo LL, Barbosa de Castro CM. In Vitro antimicrobial photoinactivation with methylene blue in different microorganisms. Braz J Oral Sci. 2014;13(1):53-57. doi:10.1590/1677-3225v13n1a11

Queiroga AS, Trajano VN, Lima EO, Ferreira AF, Queiroga AS, Limeira FA Jr. In vitro photodynamic inactivation of Candida spp. by different doses of low power laser light. Photodiagnosis Photodyn Ther. 2011;8(4):332-336.


Ahangari Z, Mojtahed Bidabadi M, Asnaashari M, Rahmati A, Tabatabaei FS. Comparison of the antimicrobial efficacy of calcium hydroxide and photodynamic therapy against Enterococcus faecalis and Candida albicans in teeth with periapical lesions; an in vivo study. J Lasers Med Sci. 2017;8(2):72-78. doi:10.15171/jlms.2017.13

Giordani R, Gachon C, Moulin-Traffort J, Regli P. A synergistic effect of Carica papaya latex sap and fluconazole on Candida albicans growth. Mycoses. 1997;40(11-12):429-437.

Giordani R, Siepaio M, Moulin-Traffort J, Regli P. Antifungal action of Carica papaya latex: isolation of fungal cell wall hydrolysing enzymes. Mycoses. 1991;34(11-12):469-477.

Krishna KL, Paridhavi M, Patel JA. Review on nutritional, medicinal and pharmacological properties of papaya (Carica papaya Linn.). Nat Prod Radiance. 2008;7(4):364-373.

Indrawati R, Karwur FF, Limantara L. Perkembangan Sensitizer pada Terapi Fotodinamik Tumor dan kanker Hingga Penuntunan Nanopartikel (Nanoparticulate Targeting) Dengan Antibodi Monoklonal. Indonesian

Journal of Cancer. 2010;4(3):101-110. doi:10.33371/ijoc.v4i3.106

Scheer H. Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Eds. In: Grimm B, Porra RJ, Rüdiger W, Scheer H, eds. Advances in Photosynthesis and Respiration. Netherlands: Springer; 2006.

DOI: https://doi.org/10.22037/jlms.v10i3.21618