• Logo
  • SBMUJournals

Modulation of Toxin-Antitoxin System Rnl AB Type II in Phage-Resistant Gammaproteobacteria Surviving Photodynamic Treatment

Nava Hosseini, Maryam Pourhajibagher, Nasim Chiniforush, Nazanin Hosseinkhan, Parizad Rezaie, Abbas Bahador
322

Views

PDF

Abstract

Type II toxin-antitoxin (TA) systems are the particular type of TA modules which take part in different kinds of cellular actions, such as biofilm formation, persistence, stress endurance, defense of the bacterial cell against multiple phage attacks, plasmid maintenance, and programmed cell death in favor of bacterial population. Although several bioinformatics and Pet lab studies have already been conducted to understand the functionality of already discovered TA systems, still, more work in this area is required. Rnl AB type II TA module, which is composed of RnlA toxin and RnlB antitoxin, is a newly discovered type II TA module which takes part in the defense mechanism against T4 bacteriophage attack in Escherichia coli K-12 strain MH1 that has not been widely studied in other bacteria. Because of the significant role of class Gammaproteobacteriacea in a diverse range of health problems, we chose here to focus on this class to survey the presence of the Rnl AB TA module. For better categorization and description of the distribution of this module in this class of bacteria, the corresponding phylogenetic trees are illustrated here. Neighbor-joining and the maximum parsimony methods were used in this study to take a look at the distribution of domains present in RnlA and RnlB proteins, among members of Gammaproteobacteria. Also, the possible roles of photodynamic therapy (PDT) in providing a substrate for better phage therapy are herein discussed.

Keywords

Toxin/antitoxin; Modules; type II TA module; Rnl AB system; Gammaproteobacteria; Phylogenetic tree; Phage therapy; Antimicrobial photodynamic therapy.

References

Gerdes K, Christensen SK, Løbner-Olesen A. Prokaryotic toxin-antitoxin stress response loci. Nature reviews. Microbiology. 2005 May 1;3(5):371.

Yamaguchi Y, Park JH, Inouye M. Toxin-antitoxin systems in bacteria and archaea. Annual review of genetics. 2011 Dec 15;45:61-79.

Leplae R, Geeraerts D, Hallez R, Guglielmini J, Drèze P, Van Melderen L. Diversity of bacterial type II toxin–antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic acids research. 2011 Mar 21;39(13):5513-25.

Fozo EM, Makarova KS, Shabalina SA, Yutin N, Koonin EV, Storz G. Abundance of type I toxin–antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic acids research. 2010 Feb 15;38(11):3743-59.

Brantl S. Bacterial type I toxin-antitoxin systems.

Makarova KS, Wolf YI, Koonin EV. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biology direct. 2009 Jun 3;4(1):19.

Rocker, Andrea, and Anton Meinhart. "Type II toxin: antitoxin systems. More than small selfish entities?." Current genetics 62.2 (2016): 287-290.

Mruk I, Kobayashi I. To be or not to be: regulation of restriction–modification systems and other toxin–antitoxin systems. Nucleic acids research. 2013 Aug 13;42(1):70-86.

Christensen SK, Maenhaut‐Michel G, Mine N, Gottesman S, Gerdes K, Van Melderen L. Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: involvement of the yefM‐yoeB toxin‐antitoxin system. Molecular microbiology. 2004 Mar 1;51(6):1705-17.

Hu MX, Zhang X, Li EL, Feng YJ. Recent advancements in toxin and antitoxin systems involved in bacterial programmed cell death. International journal of microbiology. 2010 Dec 27;2010.

Makarova KS, Wolf YI, Koonin EV. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biology direct. 2009 Jun 3;4(1):19.

Magnuson RD. Hypothetical functions of toxin-antitoxin systems. Journal of Bacteriology. 2007 Sep 1;189(17):6089-92.

Buts L, Lah J, Dao-Thi MH, Wyns L, Loris R. Toxin–antitoxin modules as bacterial metabolic stress managers. Trends in biochemical sciences. 2005 Dec 31;30(12):672-9.

Kolodkin-Gal I, Verdiger R, Shlosberg-Fedida A, Engelberg-Kulka H. A differential effect of E. coli toxin-antitoxin systems on cell death in liquid media and biofilm formation. PLoS One. 2009 Aug 26;4(8):e6785.

Zhao J, Wang Q, Li M, Heijstra BD, Wang S, Liang Q, Qi Q. Escherichia coli toxin gene hipA affects biofilm formation and DNA release. Microbiology. 2013 Mar 1;159(3):633-40.

Yamaguchi Y, Park JH, Inouye M. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. Journal of Biological Chemistry. 2009 Oct 16;284(42):28746-53.

Williams JJ, Halvorsen EM, Dwyer EM, DiFazio RM, Hergenrother PJ. Toxin–antitoxin (TA) systems are prevalent and transcribed in clinical isolates of Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. FEMS microbiology letters. 2011 Jul 22;322(1):41-50.

Chan WT, Nieto C, Harikrishna JA, Khoo SK, Othman RY, Espinosa M, Yeo CC. Genetic regulation of the yefM-yoeB toxin-antitoxin locus of Streptococcus pneumoniae. Journal of bacteriology. 2011 Sep 15;193(18):4612-25.

Jayaraman R. Bacterial persistence: some new insights into an old phenomenon. Journal of biosciences. 2008 Dec 1;33(5):795-805.

Dörr T, Vulić M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS biology. 2010 Feb 23;8(2):e1000317.

Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nature reviews. Microbiology. 2010 May 1;8(5):317.

Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GP. The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. Proceedings of the National Academy of Sciences. 2009 Jan 20;106(3):894-9.

Tan Q, Awano N, Inouye M. YeeV is an Escherichia coli toxin that inhibits cell division by targeting the cytoskeleton proteins, FtsZ and MreB. Molecular microbiology. 2011 Jan 1;79(1):109-18.

Wang X, Lord DM, Cheng HY, Osbourne DO, Hong SH, Sanchez-Torres V, Quiroga C, Zheng K, Herrmann T, Peti W, Benedik MJ. A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nature chemical biology. 2012 Oct 1;8(10):855-61.

Lobato-Márquez D, Díaz-Orejas R, García-del Portillo F. Toxin-antitoxins and bacterial virulence. FEMS microbiology reviews. 2016 Jul 29;40(5):592-609.

Gerdes K, Christensen SK, Løbner-Olesen A. Prokaryotic toxin-antitoxin stress response loci. Nature reviews. Microbiology. 2005 May 1;3(5):371.

Otsuka Y, Koga M, Iwamoto A, Yonesaki T. A role of RnlA in the RNase LS activity from Escherichia coli. Genes & genetic systems. 2007;82(4):291-9.

Otsuka Y, Yonesaki T. A novel endoribonuclease, RNase LS, in Escherichia coli. Genetics. 2005 Jan 1;169(1):13-20.

Otsuka Y, Yonesaki T. Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins. Molecular microbiology. 2012 Feb 1;83(4):669-81.

Koga M, Otsuka Y, Lemire S, Yonesaki T. Escherichia coli rnlA and rnlB compose a novel toxin–antitoxin system. Genetics. 2011 Jan 1;187(1):123-30.

Naka K, Koga M, Yonesaki T, Otsuka Y. RNase HI stimulates the activity of RnlA toxin in Escherichia coli. Molecular microbiology. 2014 Feb 1;91(3):596-605.

Gao B, Mohan R, Gupta RS. Phylogenomics and protein signatures elucidating the evolutionary relationships among the Gammaproteobacteria. International journal of systematic and evolutionary microbiology. 2009 Feb 1;59(2):234-47.

Schmidt O, Schuenemann VJ, Hand NJ, Silhavy TJ, Martin J, Lupas AN, Djuranovic S. prlF and yhaV encode a new toxin–antitoxin system in Escherichia coli. Journal of molecular biology. 2007 Sep 28;372(4):894-905.

Pandey DP, Gerdes K. Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic acids research. 2005 Jan 1;33(3):966-76.

Dienemann C, Bøggild A, Winther KS, Gerdes K, Brodersen DE. Crystal structure of the VapBC toxin–antitoxin complex from Shigella flexneri reveals a hetero-octameric DNA-binding assembly. Journal of molecular biology. 2011 Dec 16;414(5):713-22.

Sengupta M, Austin S. Prevalence and significance of plasmid maintenance functions in the virulence plasmids of pathogenic bacteria. Infection and immunity. 2011 Jul 1;79(7):2502-9.

Miguel A, Zhao W, Farenc C, Gimenez G, Raoult D, Cambillau C, Gorvel JP, Meresse S. A toxin-antitoxin module of Salmonella promotes virulence in mice. PLoS pathogens. 2013 Dec 19;9(12):e1003827.

Lobato-Márquez D, Moreno-Córdoba I, Figueroa V, Díaz-Orejas R, García-del Portillo F. Distinct type I and type II toxin-antitoxin modules control Salmonella lifestyle inside eukaryotic cells. Scientific reports. 2015;5.

Chen YT, Lauderdale TL, Liao TL, Shiau YR, Shu HY, Wu KM, Yan JJ, Su IJ, Tsai SF. Sequencing and comparative genomic analysis of pK29, a 269-kilobase conjugative plasmid encoding CMY-8 and CTX-M-3 β-lactamases in Klebsiella pneumoniae. Antimicrobial agents and chemotherapy. 2007 Aug 1;51(8):3004-7.

Page R, Peti W. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nature chemical biology. 2016 Apr 1;12(4):208-14.

Fernández-García L, Blasco L, Lopez M, Bou G, García-Contreras R, Wood T, Tomas M. Toxin-antitoxin systems in clinical pathogens. Toxins. 2016 Jul 20;8(7):227.

Page R, Peti W. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nature chemical biology. 2016 Apr 1;12(4):208-14.

Goulard C, Langrand S, Carniel E, Chauvaux S. The Yersinia pestis chromosome encodes active addiction toxins. Journal of bacteriology. 2010 Jul 15;192(14):3669-77.

Bibi-Triki S, de la Sierra-Gallay IL, Lazar N, Leroy A, Van Tilbeurgh H, Sebbane F, Pradel E. Functional and structural analysis of HicA3-HicB3, a novel toxin-antitoxin system of Yersinia pestis. Journal of bacteriology. 2014 Nov 1;196(21):3712-23.

Schureck MA, Maehigashi T, Miles SJ, Marquez J, Cho SE, Erdman R, Dunham CM. Structure of the Proteus vulgaris HigB-(HigA) 2-HigB toxin-antitoxin complex. Journal of Biological Chemistry. 2014 Jan 10;289(2):1060-70.

Ren D, Walker AN, Daines DA. Toxin-antitoxin loci vapBC-1 and vapXD contribute to survival and virulence in nontypeable Haemophilus influenzae. BMC microbiology. 2012 Nov 19;12(1):263.

Daines DA, Wu MH, Yuan SY. VapC-1 of nontypeable Haemophilus influenzae is a ribonuclease. Journal of bacteriology. 2007 Jul 15;189(14):5041-8.

Pandey DP, Gerdes K. Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic acids research. 2005 Jan 1;33(3):966-76.

Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Najima M, Nakano M, Yamashita A, Kubota Y. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. The Lancet. 2003 Mar 1;361(9359):743-9.

Van Melderen L. Toxin–antitoxin systems: why so many, what for?. Current opinion in microbiology. 2010 Dec 31;13(6):781-5.

Wang X, Wood TK. Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Applied and environmental microbiology. 2011 Aug 15;77(16):5577-83.

Bonnin RA, Poirel L, Nordmann P, Eikmeyer FG, Wibberg D, Pühler A, Schlüter A. Complete sequence of broad-host-range plasmid pNOR-2000 harbouring the metallo-β-lactamase gene bla VIM-2 from Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy. 2013 Jan 25;68(5):1060-5.

Williams JJ, Halvorsen EM, Dwyer EM, DiFazio RM, Hergenrother PJ. Toxin–antitoxin (TA) systems are prevalent and transcribed in clinical isolates of Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. FEMS microbiology letters. 2011 Jul 22;322(1):41-50.

Savari M, Rostami S, Ekrami A, Bahador A. Characterization of Toxin-Antitoxin (TA) Systems in Pseudomonas aeruginosa Clinical Isolates in Iran. Jundishapur journal of microbiology. 2016 Jan;9(1).

Fernández-García L, Blasco L, Lopez M, Bou G, García-Contreras R, Wood T, Tomas M. Toxin-antitoxin systems in clinical pathogens. Toxins. 2016 Jul 20;8(7):227.

Jurėnaitė M, Markuckas A, Sužiedėlienė E. Identification and characterization of type II toxin-antitoxin systems in the opportunistic pathogen Acinetobacter baumannii. Journal of bacteriology. 2013 Jul 15;195(14):3165-72.

Mosqueda N, Gato E, Roca I, López M, de Alegría CR, Fernández Cuenca F, Martínez-Martínez L, Pachón J, Cisneros JM, Rodríguez-Baño J, Pascual Á. Characterization of plasmids carrying the bla OXA-24/40 carbapenemase gene and the genes encoding the AbkA/AbkB proteins of a toxin/antitoxin system. Journal of Antimicrobial Chemotherapy. 2014 May 30;69(10):2629-33.

Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Güldener U, Mannhaupt G, Münsterkötter M, Mewes HW. The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic acids research. 2004 Jan 1;32(18):5539-45.

UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic acids research. 2017 Jan 4;45(D1):D158-69.

Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic acids research. 2016 Nov 28;45(D1):D200-3.

Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular biology and evolution. 2016 Mar 22;33(7):1870-4.

[Jonathan_Pevsner]_Bioinformatics_and_Functional_Genomics

Chan BK, Abedon ST, Loc-Carrillo C. Phage cocktails and the future of phage therapy. Future microbiology. 2013 Jun;8(6):769-83.

Donlan RM. Preventing biofilms of clinically relevant organisms using bacteriophage. Trends in microbiology. 2009 Feb 28;17(2):66-72.

Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease?. Photochemical & Photobiological Sciences. 2004;3(5):436-50.

Pourhajibagher M, Boluki E, Chiniforush N, Pourakbari B, Farshadzadeh Z, Ghorbanzadeh R, Aziemzadeh M, Bahador A. Modulation of virulence in Acinetobacter baumannii cells surviving photodynamic treatment with toluidine blue. Photodiagnosis and photodynamic therapy. 2016 Sep 30;15:202-12.

Boluki E, Kazemian H, Peeridogaheh H, Alikhani MY, Shahabi S, Beytollahi L, Ghorbanzadeh R. Antimicrobial activity of photodynamic therapy in combination with colistin against a pan-drug resistant Acinetobacter baumannii isolated from burn patient. Photodiagnosis and photodynamic therapy. 2017 Jun 30;18:1-5.

Misba L, Kulshrestha S, Khan AU. Antibiofilm action of a toluidine blue O-silver nanoparticle conjugate on Streptococcus mutans: a mechanism of type I photodynamic therapy. Biofouling. 2016 Mar 15;32(3):313-28.

Tegos GP, Hamblin MR. Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps. Antimicrobial agents and chemotherapy. 2006 Jan 1;50(1):196-203.

Tegos GP, Masago K, Aziz F, Higginbotham A, Stermitz FR, Hamblin MR. Inhibitors of bacterial multidrug efflux pumps potentiate antimicrobial photoinactivation. Antimicrobial agents and chemotherapy. 2008 Sep 1;52(9):3202-9.

Kishen A, Upadya M, Tegos GP, Hamblin MR. Efflux pump inhibitor potentiates antimicrobial photodynamic inactivation of Enterococcus faecalis biofilm. Photochemistry and photobiology. 2010 Nov 1;86(6):1343-9.




DOI: https://doi.org/10.22037/jlms.v10i1.19054