• Logo
  • SBMUJournals

The Impact of CO2 Laser Treatment and Acidulated Phosphate Fluoride on Enamel Demineralization and Biofilm Formation

Ana Bárbara Araújo Loiola, Carolina Patrícia Aires, Fabiana Almeida Curylofo-Zotti, Antônio Luiz Rodrigues Junior, Aline Evangelista Souza-Gabriel, Silmara Aparecida Milori Corona




Introduction: This study evaluated the impact of CO2 laser treatment and acidulated phosphate fluoride (APF) on enamel demineralization and biofilm formation, using in vitro and in situ designs.

Methods: Demineralized enamel slabs were distributed among 8 groups: placebo, placebo + continuous CO2 laser, placebo + repeated CO2 laser, placebo + ultrapulsed CO2 laser, 1.23% APF, APF + continuous CO2 laser, APF + repeated CO2 laser and APF + ultrapulsed CO2 laser. In the in vitro study, 15 enamel slabs from each group were subjected to a pH-cycling regimen for 14 days. In the cross over in situ design, 11 volunteers wore palatal appliances with demineralized enamel slabs for 2 periods of 14 days each. Drops of sucrose solution were dripped onto enamel slabs 8×/day. Biofilms formed on slabs were collected and the colony-forming units (CFU) of Streptococcus mutans and Lactobacillus were determined.


Results: For both in vitro and in situ studies, there was no significant difference between treatments (P > 0.05). However, all treatments increased microhardness of demineralized enamel (P < 0.05). After a further in situ cariogenic challenge, with the exception of the placebo, all treatments maintained microhardness values (P < 0.05). Microbiological analysis showed no difference in Streptococcus mutans (P > 0.05) or Lactobacillus (P > 0.05) counts between groups.


Conclusion: The results suggest that APF gel combined with the CO2 laser, regardless of the pulse emission mode used, was effective in controlling enamel demineralization, but none of the tested treatments was able to prevent bacterial colonization.


Dental caries; Enamel; Fluoride; Laser; Microbiology


Jepsen S, Blanco J, Buchalla W, et al. Prevention and control of dental caries and periodontal diseases at individual and population level: consensus report of group 3 of joint EFP/ ORCA workshop on the boundaries between caries and periodontal diseases. J Clin Periodontol. 2017;44 Suppl 18:S85-s93. doi:10.1111/jcpe.12687

Esteves-Oliveira M, El-Sayed KF, Dorfer C, Schwendicke F. Impact of combined CO2 laser irradiation and fluoride on enamel and dentin biofilm-induced mineral loss. Clin Oral Investig. 2017;21(4):1243-1250. doi:10.1007/s00784- 016-1893-1

Mahmoudzadeh M, Rezaei-Soufi L, Farhadian N, et al. Effect of CO2 laser and fluoride varnish application on microhardness of enamel surface around orthodontic brackets. J Lasers Med Sci. 2018;9(1):43-49. doi:10.15171/ jlms.2018.10

Zancope BR, Dainezi VB, Nobre-Dos-Santos M, Duarte S Jr, Pardi V, Murata RM. Effects of CO2 laser irradiation on matrix-rich biofilm development formation-an in vitro study. PeerJ. 2016;4:e2458. doi:10.7717/peerj.2458

Souza-Gabriel AE, Turssi CP, Colucci V, Tenuta LM, Serra MC, Corona SA. In situ study of the anticariogenic potential of fluoride varnish combined with CO2 laser on enamel. Arch Oral Biol. 2015;60(6):804-810. doi:10.1016/j. archoralbio.2015.01.016

Mohan AG, Ebenezar AV, Ghani MF, Martina L, Narayanan A, Mony B. Surface and mineral changes of enamel with different remineralizing agents in conjunction with carbon-dioxide laser. Eur J Dent. 2014;8(1):118-123. doi:10.4103/1305-7456.126264

Correa-Afonso AM, Bachmann L, de Almeida CG, Dibb RG, Corona SA, Borsatto MC. CO2-lased enamel microhardness after brushing and cariogenic challenge. J Biomed Opt. 2013;18(10):108003. doi:10.1117/1. jbo.18.10.108003

de Souza-e-Silva CM, Parisotto TM, Steiner-Oliveira C, Kamiya RU, Rodrigues LK, Nobre-dos-Santos M. Carbon dioxide laser and bonding materials reduce enamel demineralization around orthodontic brackets. Lasers Med Sci. 2013;28(1):111-118. doi:10.1007/s10103-012-1076-5

Esteves-Oliveira M, Zezell DM, Meister J, et al. CO2 Laser (10.6 microm) parameters for caries prevention in dental enamel. Caries Res. 2009;43(4):261-268. doi:10.1159/000217858

Fox JL, Yu D, Otsuka M, Higuchi WI, Wong J, Powell GL. Initial dissolution rate studies on dental enamel after CO2 laser irradiation. J Dent Res. 1992;71(7):1389-1398. doi:10. 1177/00220345920710070701

Chang NN, Jew JM, Simon JC, et al. Influence of multi- wavelength laser irradiation of enamel and dentin surfaces at 0.355, 2.94, and 9.4 mum on surface morphology, permeability, and acid resistance. Lasers Surg Med. 2017;49(10):913-927. doi:10.1002/lsm.22700

Seino PY, Freitas PM, Marques MM, de Souza Almeida FC, Botta SB, Moreira MS. Influence of CO2 (10.6 mum) and Nd: YAG laser irradiation on the prevention of enamel caries around orthodontic brackets. Lasers Med Sci. 2015;30(2):611-616. doi:10.1007/s10103-013-1380-8

Cohen J, Featherstone JD, Le CQ, Steinberg D, Feuerstein O. Effects of CO2 laser irradiation on tooth enamel coated with biofilm. Lasers Surg Med. 2014;46(3):216-223. doi:10.1002/lsm.22218

Chiang YC, Lee BS, Wang YL, et al. Microstructural changes of enamel, dentin-enamel junction, and dentin induced by irradiating outer enamel surfaces with CO2 laser. Lasers Med Sci. 2008;23(1):41-48. doi:10.1007/s10103-007-0453-y

Steiner-Oliveira C, Rodrigues LK, Soares LE, Martin AA, Zezell DM, Nobre-dos-Santos M. Chemical, morphological and thermal effects of 10.6-microm CO2 laser on the inhibition of enamel demineralization. Dent Mater J. 2006;25(3):455-462.

Belcheva A, El Feghali R, Nihtianova T, Parker S. Effect of the carbon dioxide 10,600-nm laser and topical fluoride gel application on enamel microstructure and microhardness after acid challenge: an in vitro study. Lasers Med Sci. 2018;33(5):1009-1017. doi:10.1007/s10103-018-2446-4

Farhadian N, Rezaei-Soufi L, Jamalian SF, et al. Effect of CPP-ACP paste with and without CO2 laser irradiation on demineralized enamel microhardness and bracket shear bond strength. Dental Press J Orthod. 2017;22(4):53-60. doi:10.1590/2177-6709.22.4.053-060.oar

Valerio RA, Rocha CT, Galo R, Borsatto MC, Saraiva MC, Corona SA. CO2 laser and topical fluoride therapy in the control of caries lesions on demineralized primary enamel. ScientificWorldJournal. 2015;2015:547569. doi:10.1155/2015/547569

Gonzalez CD, Zakariasen KL, Dederich DN, Pruhs RJ. Potential preventive and therapeutic hard-tissue plications of CO2, Nd: YAG and argon lasers in dentistry: a review. ASDC J Dent Child. 1996;63(3):196-207.

Ahrari F, Heravi F, Fekrazad R, Farzanegan F, Nakhaei S. Does ultra-pulse CO(2) laser reduce the risk of enamel damage during debonding of ceramic brackets? Lasers Med Sci. 2012;27(3):567-574. doi:10.1007/s10103-011-0933-y

Sol A, Feuerstein O, Featherstone JD, Steinberg D. Effect of sublethal CO2 laser irradiation on gene expression of streptococcus mutans immobilized in a biofilm. Caries Res. 2011;45(4):361-369. doi:10.1159/000329390

Hauser-Gerspach I, Stubinger S, Meyer J. Bactericidal effects of different laser systems on bacteria adhered to dental implant surfaces: an in vitro study comparing zirconia with titanium. Clin Oral Implants Res. 2010;21(3):277-283. doi:10.1111/j.1600-0501.2009.01835.x

Esteves-Oliveira M, El-Sayed KF, Dorfer C, Schwendicke F. Impact of combined CO2 laser irradiation and fluoride on enamel and dentin biofilm-induced mineral loss. Clin Oral Investig. 2017;21(4):1243-1250. doi:10.1007/s00784- 016-1893-1

Jeng YR, Lin TT, Wong TY, Chang HJ, Shieh DB. Nano-mechanical properties of fluoride-treated enamel surfaces. J Dent Res. 2008;87(4):381-385. doi:10.1177/154405910808700414

Tepper SA, Zehnder M, Pajarola GF, Schmidlin PR. Increased fluoride uptake and acid resistance by CO2 laser- irradiation through topically applied fluoride on human enamel in vitro. J Dent. 2004;32(8):635-641. doi:10.1016/j. jdent.2004.06.010

Esteves-Oliveira M, Zezell DM, Ana PA, Yekta SS, Lampert F, Eduardo CP. Dentine caries inhibition through CO2 laser (10.6mum) irradiation and fluoride application, in vitro. Arch Oral Biol. 2011;56(6):533-539. doi:10.1016/j. archoralbio.2010.11.019

Meurman JH, Hemmerle J, Voegel JC, Rauhamaa-Makinen R, Luomanen M. Transformation of hydroxyapatite to fluorapatite by irradiation with high-energy CO2 laser. Caries Res. 1997;31(5):397-400. doi:10.1159/000262425

Curylofo-Zotti FA, Tanta GS, Zucoloto ML, Souza-Gabriel AE, Corona SAM. Selective removal of carious lesion with Er:YAG laser followed by dentin biomodification with chitosan. Lasers Med Sci. 2017;32(7):1595-1603. doi:10.1007/s10103-017-2287-6

Viana PS, Machado AL, Giampaolo ET, Pavarina AC, Vergani CE. Disinfection of bovine enamel by microwave irradiation: effect on the surface microhardness and demineralization/remineralization processes. Caries Res. 2010;44(4):349-357. doi:10.1159/000318528

Serra MC, Cury JA. The in vitro effect of glass- ionomer cement restoration on enamel subjected to a demineralization and remineralization model. Quintessence Int. 1992;23(2):143-147.

Featherstone JD, Nelson DG. Laser effects on dental hard tissues. Adv Dent Res. 1987;1(1):21-26. doi:10.1177/089593 74870010010701

Hara AT, Queiroz CS, Paes Leme AF, Serra MC, Cury JA. Caries progression and inhibition in human and bovine root dentine in situ. Caries Res. 2003;37(5):339-344. doi:10.1159/000072165

Cury JA, Rebelo MA, Del Bel Cury AA, Derbyshire MT, Tabchoury CP. Biochemical composition and cariogenicity of dental plaque formed in the presence of sucrose or glucose and fructose. Caries Res. 2000;34(6):491-497. doi:10.1159/000016629

Aires CP, Del Bel Cury AA, Tenuta LM, et al. Effect of starch and sucrose on dental biofilm formation and on root dentine demineralization. Caries Res. 2008;42(5):380-386. doi:10.1159/000154783

Zero DT. In situ caries models. Adv Dent Res. 1995;9(3):214- 230. doi:10.1177/08959374950090030501

Steiner-Oliveira C, Rodrigues LK, Lima EB, Nobre-dos- Santos M. Effect of the CO2 laser combined with fluoridated products on the inhibition of enamel demineralization. J Contemp Dent Pract. 2008;9(2):113-121.

Lepri TP, Colucci V, Turssi CP, Corona SA. In situ investigation of the effect of TiF4 and CO2 laser irradiation on the permeability of eroded enamel. Arch Oral Biol. 2015;60(6):941-947. doi:10.1016/j.archoralbio.2015.02.001

Kim HE, Kim BI. Prediction of early caries prognosis after fluoride application based on the severity of lesions: An in situ study. Photodiagnosis Photodyn Ther. 2018;23:45-49. doi:10.1016/j.pdpdt.2018.05.008

Nakagaki S, Iijima M, Endo K, Saito T, Mizoguchi I. Effects of CO2 laser irradiation combined with fluoride application on the demineralization, mechanical properties, structure, and composition of enamel. Dent Mater J. 2015;34(3):287- 293. doi:10.4012/dmj.2014-225

Poosti M, Ahrari F, Moosavi H, Najjaran H. The effect of fractional CO2 laser irradiation on remineralization of enamel white spot lesions. Lasers Med Sci. 2014;29(4):1349- 1355. doi:10.1007/s10103-013-1290-9

Gonzalez-Rodriguez A, de Dios Lopez-Gonzalez J, de Dios Luna-del Castillo J, Villalba-Moreno J. Comparison of effects of diode laser and CO2 laser on human teeth and their usefulness in topical fluoridation. Lasers Med Sci. 2011;26(3):317-324. doi:10.1007/s10103-010-0784-y

Fried D, Featherstone JD, Le CQ, Fan K. Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a lambda = 9.3-microm TEA CO2 laser. Lasers Surg Med. 2006;38(9):837-845. doi:10.1002/ lsm.20385

Fowler BO, Kuroda S. Changes in heated and in laser- irradiated human tooth enamel and their probable effects on solubility. Calcif Tissue Int. 1986;38(4):197-208.

Hsu CY, Jordan TH, Dederich DN, Wefel JS. Effects of low-energy CO2 laser irradiation and the organic matrix on inhibition of enamel demineralization. J Dent Res. 2000;79(9):1725-1730. doi:10.1177/002203450007900914 01

DOI: https://doi.org/10.22037/jlms.v10i3.18440