• Logo
  • SBMUJournals

Gene Expression Analysis of Chondrogenic Markers in Hair Follicle Dermal Papillae Cells Under the Effect of Laser Photobiomodulation and the Synovial Fluid

Shirin Farivar, Roya Ramezankhani, Ezedin Mohajerani, Mohammad Hosein Ghazimoradi, Reza Shiari
46

Views

PDF

Abstract

Introduction: Regarding the limited ability of the damaged cartilage cells to self-renew, which is due to their specific tissue structure, subtle damages can usually cause diseases such as osteoarthritis. In this work, using laser photobiomodulation and an interesting source of growth factors cocktail called the synovial fluid, we analyzed the chondrogenic marker genes in treated hair follicle dermal papilla cells as an accessible source of cells with relatively high differentiation potential.


Methods: Dermal papilla cells were isolated from rat whisker hair follicle (Rattus norvegicus) and established cell cultures were treated with a laser (gallium aluminum arsenide diode Laser (λ=780 nm, 30 mW) at 5 J/cm2), the synovial fluid, and a combination of both. After 1, 4, 7, and 14 days, the morphological changes were evaluated and the expression levels of four chondrocyte marker genes (Col2a1, Sox-9, Col10a1, and Runx-2) were assessed by the quantitative real-time polymerase chain reaction.


Results: It was monitored that treating cells with laser irradiation can accelerate the rate of proliferation of cells. The morphology of the cells treated with the synovial fluid altered considerably as in the fourth day they surprisingly looked like cultured articular chondrocytes. The gene expression analysis showed that all genes were up-regulated until the day 14 following the treatments although not equally in all the cell groups. Moreover, the cell groups treated with both irradiation and the synovial fluid had a significantly augmented expression in gene markers.


Conclusion: Based on the gene expression levels and the morphological changes, we concluded that the synovial fluid can have the potential to make the dermal papilla cells to most likely mimic the chondrogenic and/or osteogenic differentiation, although this process seems to be augmented by the irradiation of the low-level laser.


Keywords

Hair follicle dermal papilla cells; Differentiation; Laser photobiomodulation; Synovial fluid; Cartilage

References

Yang CC, Cotsarelis G. Review of hair follicle dermal cells. J Dermatol Sci. 2010;57(1):2-11. doi:10.1016/j. jdermsci.2009.11.005

Paus R, Cotsarelis G. The biology of hair follicles. N Engl J Med. 1999;341(7):491-497. doi:10.1056/ nejm199908123410706

Lako M, Armstrong L, Cairns PM, Harris S, Hole N, Jahoda CA. Hair follicle dermal cells repopulate the mouse haematopoietic system. J Cell Sci. 2002;115(Pt 20):3967-3974.

Driskell RR, Clavel C, Rendl M, Watt FM. Hair follicle dermal papilla cells at a glance. J Cell Sci. 2011;124(Pt8):1179-1182. doi:10.1242/jcs.082446

Jahoda CA, Whitehouse J, Reynolds AJ, Hole N. Hair follicle dermal cells differentiate into adipogenic and osteogenic

lineages. Exp Dermatol. 2003;12(6):849-859.

Wu G, Deng ZH, Fan XJ, et al. Odontogenic potential of mesenchymal cells from hair follicle dermal papilla. Stem

Cells Dev. 2009;18(4):583-589. doi:10.1089/scd.2008.0066

Rufaut NW, Goldthorpe NT, Wildermoth JE, Wallace OA. Myogenic differentiation of dermal papilla cells

from bovine skin. J Cell Physiol. 2006;209(3):959-966. doi:10.1002/jcp.20798

Fernandes KJ, McKenzie IA, Mill P, et al. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol. 2004;6(11):1082-1093. doi:10.1038/ncb1181

Maekawa M, Yamada K, Toyoshima M, et al. Utility of Scalp Hair Follicles as a Novel Source of Biomarker Genes for Psychiatric Illnesses. Biol Psychiatry. 2015;78(2):116- 125. doi:10.1016/j.biopsych.2014.07.025

Goldring MB. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther Adv Musculoskelet Dis. 2012;4(4):269-285. doi:10.1177/1759720x12448454

Pelttari K, Barbero A, Martin I. A potential role of homeobox transcription factors in osteoarthritis. AnnTransl Med. 2015;3(17):254. doi:10.3978/j.issn.2305-5839.2015.09.44

Demoor M, Ollitrault D, Gomez-Leduc T, et al. Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta. 2014;1840(8):2414-2440. doi:10.1016/j.bbagen.2014.02.030

Gao X, Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci. 2009;16:4.

doi:10.1186/1423-0127-16-4

Petri AD, Teixeira LN, Crippa GE, Beloti MM, de Oliveira PT, Rosa AL. Effects of low-level laser therapy on human osteoblastic

cells grown on titanium. Braz Dent J. 2010;21(6):491-498.

Farivar S, Malekshahabi T, Shiari R. Biological Effects of Low Level Laser Therapy. Journal of Lasers in Medical Sciences. 2014;5(2):58-62.

Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts-an in vitro study. Lasers Med Sci. 2012;27(2):423-430. doi:10.1007/s10103-011-0930-1

Stein A, Benayahu D, Maltz L, Oron U. Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg. 2005;23(2):161-166. doi:10.1089/pho.2005.23.161

de Villiers JA, Houreld NN, Abrahamse H. Influence of low intensity laser irradiation on isolated human adipose

derived stem cells over 72 hours and their differentiation potential into smooth muscle cells using retinoic acid. Stem Cell Rev. 2011;7(4):869-882. doi:10.1007/s12015-011-9244-8

Kushibiki T, Hirasawa T, Okawa S, Ishihara M. Low Reactive Level Laser Therapy for Mesenchymal Stromal Cells Therapies. Stem Cells International. 2015;2015:12.doi:10.1155/2015/974864

Trosko JE, Chang CC. Isolation and characterization of normal adult human epithelial pluripotent stem cells. Oncol Res. 2003;13(6-10):353-357.

Houssiau FA, Devogelaer JP, Van Damme J, de Deuxchaisnes CN, Van Snick J. Interleukin-6 in synovial fluid and serum of patients with rheumatoid arthritis and other inflammatory arthritides. Arthritis Rheum.1988;31(6):784-788.

Mannami K, Mitsuhashi T, Takeshita H, et al. Concentration of interleukin-1 beta in serum and synovial fluid in patients with rheumatoid arthritis and those with osteoarthritis. Nihon Seikeigeka Gakkai Zasshi. 1989;63(11):1343-1352.

Manabe N, Oda H, Nakamura K, Kuga Y, Uchida S, Kawaguchi H. Involvement of fibroblast growth factor-2 in joint destruction of rheumatoid arthritis patients. Rheumatology (Oxford). 1999;38(8):714-720.

Brennan FM, Chantry D, Turner M, Foxwell B, Maini R, Feldmann M. Detection of transforming growth factorbeta in rheumatoid arthritis synovial tissue: lack of effect on spontaneous cytokine production in joint cell cultures. Clin Exp Immunol. 1990;81(2):278-285.

Tavera C, Abribat T, Reboul P, et al. IGF and IGF-binding protein system in the synovial fluid of osteoarthritic and rheumatoid arthritic patients. Osteoarthritis Cartilage.1996;4(4):263-274.

de Sousa E, Casado P, Neto V, Duarte M, Aguiar D. Synovial fluid and synovial membrane mesenchymal stem cells:

latest discoveries and therapeutic perspectives. Stem Cell Research & Therapy. 2014;5(5):1-6. doi:10.1186/scrt501

Gledhill K, Gardner A, Jahoda CA. Isolation and establishment of hair follicle dermal papilla cell cultures. Methods Mol Biol. 2013;989:285-292. doi:10.1007/978-1- 62703-330-5_22

Greco M, Guida G, Perlino E, Marra E, Quagliariello E. Increase in RNA and protein synthesis by mitochondria irradiated with helium-neon laser. Biochem Biophys Res Commun. 1989;163(3):1428-1434.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-408. doi:10.1006/meth.2001.1262

Gosset M, Berenbaum F, Thirion S, Jacques C. Primary culture and phenotyping of murine chondrocytes. Nat Protoc. 2008;3(8):1253-1260. doi:10.1038/nprot.2008.95

Oliver RF. The experimental induction of whisker growth in the hooded rat by implantation of dermal papillae. J Embryol Exp Morphol. 1967;18(1):43-51.

Jahoda CA, Horne KA, Oliver RF. Induction of hair growth by implantation of cultured dermal papilla cells. Nature. 1984;311(5986):560-562.

Hunt DP, Morris PN, Sterling J, et al. A highly enriched niche of precursor cells with neuronal and glial potential

within the hair follicle dermal papilla of adult skin. Stem Cells. 2008;26(1):163-172. doi:10.1634/stemcells.2007-0281

Jagielski M, Wolf J, Marzahn U, et al. The influence of IL-10 and TNFalpha on chondrogenesis of human mesenchymal stromal cells in three-dimensional cultures. Int J Mol Sci.2014;15(9):15821-15844. doi:10.3390/ijms150915821

Danisovic L, Varga I, Polak S. Growth factors and chondrogenic differentiation of mesenchymal stem cells. Tissue Cell. 2012;44(2):69-73. doi:10.1016/j. tice.2011.11.005

Zuscik MJ, Hilton MJ, Zhang X, Chen D, O’Keefe RJ. Regulation of chondrogenesis and chondrocyte differentiation by stress. J Clin Invest. 2008;118(2):429-438. doi:10.1172/jci34174

Akiyama H. Control of chondrogenesis by the transcription factor Sox9. Mod Rheumatol. 2008;18(3):213-219. doi:10.1007/s10165-008-0048-x

Li F, Lu Y, Ding M, et al. Runx2 contributes to murine Col10a1 gene regulation through direct interaction with its cis-enhancer. J Bone Miner Res. 2011;26(12):2899-2910. doi:10.1002/jbmr.504

Leung VYL, Gao B, Leung KKH, et al. SOX9 Governs Differentiation Stage-Specific Gene Expression in Growth Plate Chondrocytes via Direct Concomitant Transactivation and Repression. PLoS Genet. 2011;7(11). doi:10.1371/journal.pgen.1002356

Sahni M, Ambrosetti DC, Mansukhani A, Gertner R, Levy D, Basilico C. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev. 1999;13(11):1361-1366.

van der Kraan PM, Blaney Davidson EN, Blom A, van den Berg WB. TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis: modulation and integration of signaling pathways through receptor-

Smads. Osteoarthritis Cartilage. 2009;17(12):1539-1545. doi:10.1016/j.joca.2009.06.008

Namba A, Aida Y, Suzuki N, et al. Effects of IL-6 and soluble IL-6 receptor on the expression of cartilage matrix proteins in human chondrocytes. Connect Tissue Res. 2007;48(5):263-270. doi:10.1080/03008200701587513

Kushibiki T, Tajiri T, Ninomiya Y, Awazu K. Chondrogenic mRNA expression in prechondrogenic cells after blue laser irradiation. J Photochem Photobiol B. 2010;98(3):211-215. doi:10.1016/j.jphotobiol.2010.01.008

Fujimoto K, Kiyosaki T, Mitsui N, et al. Low-intensity laser irradiation stimulates mineralization via increased BMPs in MC3T3-E1 cells. Lasers Surg Med. 2010;42(6):519-526. doi:10.1002/lsm.20880

Wang X, Manner PA, Horner A, Shum L, Tuan RS, Nuckolls GH. Regulation of MMP-13 expression by RUNX2 and

FGF2 in osteoarthritic cartilage. Osteoarthritis Cartilage. 2004;12(12):963-973. doi:10.1016/j.joca.2004.08.008

Cheng A, Genever PG. SOX9 determines RUNX2 transactivity by directing intracellular degradation. J Bone Miner Res. 2010;25(12):2680-2689. doi:10.1002/jbmr.174

Bogatkevich GS, Ludwicka-Bradley A, Highland KB, et al. Down-regulation of collagen and connective tissue growth factor expression with hepatocyte growth factor in lung fibroblasts from white scleroderma patients via two signaling pathways. Arthritis Rheum. 2007;56(10):3468-3477. doi:10.1002/art.22874




DOI: https://doi.org/10.22037/jlms.v10i3.16641