Combined Approach to Treat Medication-Related Osteonecrosis of the Jaws

Elisabetta Merigo¹,², Luigi Cella², Aldo Oppici², Maria Cristina Arbasi³, Fabio Clini², Matteo Fontana², Carlo Fornaini¹,²*

¹MICORALIS Laboratory EA7354, Faculty of Dentistry, Université “Côte d’Azur”, 24 Avenue des Diables Bleus, 06357 Nice, France
²Odontostomatology and Maxillo-Facial Surgery Unit – “Special care dentistry”, “Guglielmo da Saliceto” Hospital - Via Taverna, 10 – 29100, Piacenza, Italy
³Immunohematology and Transfusion Medicine “Guglielmo da Saliceto” Hospital – via Taverna, 10 – 29100, Piacenza, Italy

Abstract
Introduction: The proper therapeutic plan for medication-related osteonecrosis of the Jaw (MRONJ) is still lacking long-term data up to today. They were several high-technological appliances proposed for the different intervention steps, in addition to tissue repair promoters. The reason for proposing an integrated technique is justified, beyond better compliance of the patients associated to the pain and inflammation reduction and bleeding control, there is also achieving better hard and soft tissues healing.

Methods: Patients diagnosed with bisphosphonates-related osteonecrosis of the jaws (BRONJ) at the Odontostomatology and Maxillo-Facial Surgery Unit of the Hospital of Piacenza undergone surgical intervention. The intervention was performed by using different devices: Piezosurgery for removing the necrotic bone tissue and for obtaining the bone specimen essential for histological analysis; Er:YAG laser (2940 nm) to vaporize necrotic hard tissue until reaching the bleeding bone; platelet-rich plasma (PRP) to stimulate hard and soft tissue healing; and finally diode laser (808 nm) to perform a biostimulation of the surgical site.

Results: All treated patients demonstrated a good postoperative comfort even without using painkillers, no bleeding, and a fast healing process. Most of the patients (92.85%) reached complete healing with a minimum follow up at 6 months. Histological exams demonstrated a good quality without artifacts.

Conclusion: Sequential utilization of different high-technologies devices during all the steps of MRONJ treatment allows to perform a faster and less invasive surgery with a more comfortable postoperative healing process and it may represent a new and original approach for treating this severe adverse event.

Keywords: Medication-related osteonecrosis of the jaws; BRONJ; Laser; Piezosurgery; Platelet-rich factor.

Introduction

Recently, the “American Association of Oral and Maxillofacial Surgeons” (AAOMS) proposed to change the term “bisphosphonates-related osteonecrosis of the jaws” (BRONJ) into “medication-related osteonecrosis of the jaws” (MRONJ) based on the growing number of its clinical cases involving the maxilla and mandible associated with other anti-resorption (denosumab) and anti-angiogenic drugs.¹ The diagnosis for MRONJ, based also on radiological and serological (CTX) data, does not yet give a clear indication for the treatment protocol.²⁻⁴ A recent review of the literature has well exposed that the scientific community has not found a viable solution to counter this challenging disease,⁵ and the emphasis that has been placed by the AAOMS on the preventive aspects for this disease, unmasks the current uncertainty regarding the therapeutic approach. Although there is no consensus on a resolving therapy for this disease, surgery plays a key role: the results for the surgical approach appear to be better than that of the conservative one.⁶ These drugs create some alteration in bone homeostasis by the alteration of the bone turnover balance and the angiogenic pathway. This disease implications are particularly insidious for several reasons:

(a) The mechanism by which it achieves bone necrosis is not clear, it is often (about 60% of cases) apparently...
spontaneous, while in the rest of the cases it is related to
dental procedures and so not classified as an acute event; (b) These drugs, particularly bisphosphonates (BFs),
may remain bioavailable for several years, their action persisting a long time after therapy and/or recurring even
years after the treatment; (c) Drugs holiday does not significantly improve the state of
necrosis even if this strategy is considered as a prudent
approach by different scientific societies; (d) The presence of compromised teeth, as well as the
surgical act of their removal, can trigger the disease; (e) Otherwise, it is different from osteoradionecrosis,
where bleeding bone is the sign of viable bone, in MRONJ this is not guaranteed of healthy tissue; this has led
several authors to recommend a conservative approach in
treating MRONJ; (f) The imbalance of bone cell turnover in osteoblastic
activity seems to be an imbalance of the whole bone
extracellular matrix, although there is no consensus on
this; (g) Although the histology of the intraoral soft tissues
appears normal, these drugs also create some changes
in the epithelium, so determining a deterioration of its
quality.

If the disease is diagnosed in the early stage and systemic
conditions are good, the curettage may be successful;
in advanced cases with severe systemic disease, a more
invasive approach with the use of free micro-vascularized flap with fibula or iliac crest may be necessary.

In the past years, bone marrow stem cells (BMSCs) have
been proposed to promote healing of osteonecrotic sites,
due to their ability to differentiate into different human
tissues, revealing a promising therapeutic option in
different fields of application.
The BMSC are multipotent stem cells (MSCs) able to
differentiate into different human tissues and bone
marrow represents a rich bank.

The BMSC belong to the category of MSCs which,
together with those of adipocytes and umbilical cord, may
differentiate into different mature tissues (bone marrow,
cartilage, adipose tissue, muscle, nerve).

MSCs are found widely in the human body, especially in
organs with high cell turnover (skin, epithelium) and they
reside in niches that are 3-D micro-environments where
they participate in tissue homeostasis.
The mechanism by which stem cells (MSC) localize
themselves is still not well defined.

Very few MSC were found circulating in the peripheral
blood, and when injected, they have little capacity to
localize themselves in normal conditions.
The difference of results between orthopedics and
maxillofacial surgery use of BMSC is linked to the
different quality of the surrounding tissues.

Literature proposed, as an adjuvant therapy for different
bone diseases, platelet-rich plasma (PRP) which is largely
used in maxillofacial surgery and in many other
medical fields. The rationale for its use is the addition of
growth factors (GFs) in suffering environments. PRP, in
fact, contains many GFs such as fibroblast growth factor
(bFGF), epidermal growth factor (EGF), keratinocyte
growth factor (KGF), platelet-derived growth factor
(PDGF), insulin-like growth factor (IGF), vascular
endothelial growth factor (VEGF), also transforming
growth factor-β (TGF-β) which may modulate and prevent
excessive recruitment of inflammatory leukocytes.

The secretion of these factors starts with platelet activation
immediately after the addition of calcium which is the co-
factor necessary for the degranulation.

VEGF is a pleiotropic factor that activates a cascade of
events inducing the revascularization of injured tissues.

These proteins are involved in tissue healing through
cells chemotaxis, proliferation and differentiation,
angiogenesis and deposition of new extracellular matrix.

Reduced secretion of VEGF caused by the BF may explain the
difficulty of reparation of intraoral soft tissues.

The PRP has been shown to increase the number of BMSC to
4 times as much when administered together, thus
assuming a role in potentiating the effects of BMSC.

Although leukocytes have been proposed as additional
carriers of cytokines and microbiode proteins,
the addition of the leukocytes to the PRP (PRP-L) did not
demonstrate a difference in the bactericidal power, while
platelet-derived peptides have shown a role as activators
of neutrophils.

This property has been used to reduce the intra-operative
(short therapy), to boost and eliminate the daily post-
operative administration of antibiotics, and despite the
dehiscence of the surgical wound, the latter phenomenon
was almost constant.

Piezosurgery

“Piezosurgery Medical Device” (PMID) is an original
surgical appliance which uses piezoelectric ultrasonic
vibrations for cutting, successfully employed for
performing different bone surgical procedures in the oral
and maxillofacial field with great results in term of the
related complications reductions. Its main advantages
described are the scanty bleeding and bruising, the
harmless effect on soft tissues and the low pressure
needed to create bony cuts, so minimizing tissue trauma
and, consequently, its associated morbidity.

In the literature, a large case series suggested that bone
resection performed by a high-power ultrasonic surgery
associated with antibiotic therapy might lead to BRONJ
healing.

Laser

Laser devices are described as useful tools for different
applications in the treatment of MRONJ, being able to
perform the removal of necrotic bone by vaporization as
well as biomodulation of both soft and hard tissues.

Thanks to the affinity of the Er:YAG laser wavelength
and Maxillo-Facial Surgery Unit - Special care dentistry of the Guglielmo da Saliceto Hospital of Piacenza (Italy) and identified as positive for MRONJ on the basis of recognized criteria. 21 patients, 16 women and 5 men with a mean age of 72.6 years (range 60–85 years) have been treated with a combined surgical approach, after the signature of the informed consent. Eleven patients (52.4%) were positive for treatment with zoledronate for solid tumors (7 for breast cancer), while 10 patients (47.6%) were positive for osteometabolic diseases (8 osteoporosis, 1 rheumatoid arthritis and 1 osteoporosis and rheumatoid arthritis) and treatment with oral BPs; the duration of treatment with BPs was variable between 5 and 164 months. Out of oncological patients, 3 have been also treated with sunitinib (Table 1).

Fifteen patients (71.4%) presented a mandibular localization for MRONJ, 6 (28.6%) a maxillary localization (Figure 1). Based on AAOMS staging system, 2 MRONJ (9.6%) were classified as Stage I, 15 MRONJ (71.4%) were classified as Stage II and 4 (19%) as Stage III. The extension and the features of the osteonecrosis were evaluated by clinical examination and radiographically with panoramic X-rays scan and CT scan. To all the patients it was prescribed an antibiotic therapy with amoxicillin+clavulanate 2 g/d and metronidazole 500 mg/d per os (or clindamycin in case of allergy), starting the therapy 3 days before surgery and interrupting the antibiotics at least 2 weeks after surgery and with a closed surgical wound.

Piezosurgery
PMD (Mectron, Italy) was applied to remove necrotic bone specimen of MRONJ sites allowing a histological analysis to finalize the diagnostic confirmation for MRONJ (Figures 2A-2B). The instrument was used with a microsaw of 0.55 mm firmly moved over the bone avoiding the use of an excessive force and with an integrated saline coolant spray to maintain a low temperature and a good vision of the surgical site.

Laser Devices
Er:YAG laser device (2940 nm – Lightwalker, Fotona, Slovenia) was used in the treated patients to perform vaporization of necrotic bone until the observation of vaporization of necrotic bone.

The aim of this work is to present the experience of the Odontostomatology and Maxillo-Facial Surgery Unit of the Hospital of Piacenza (Italy) with a combined approach, based on the use of laser, piezosurgery and PRP, for the treatment of MRONJ.

Methods
Patients
Out of the patients evaluated at the Odontostomatology
Table 1. Characteristics of Patients

<table>
<thead>
<tr>
<th>Patient</th>
<th>Gender</th>
<th>Age</th>
<th>Primary Disease</th>
<th>Diagnosis</th>
<th>Comorbidities</th>
<th>Smoke</th>
<th>BPT</th>
<th>Monoclonal Antibodies</th>
<th>Duration (mon)</th>
<th>Steroids</th>
<th>VIT D</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>F</td>
<td>80</td>
<td>Breast cancer</td>
<td>2013</td>
<td>Hypertension</td>
<td>No</td>
<td>Zoledronate</td>
<td></td>
<td>12</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>BG</td>
<td>F</td>
<td>74</td>
<td>Breast cancer</td>
<td></td>
<td></td>
<td>No</td>
<td>Zoledronate</td>
<td></td>
<td>18</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>BGR</td>
<td>F</td>
<td>67</td>
<td>Breast cancer</td>
<td>2010</td>
<td></td>
<td>Yes</td>
<td>Zoledronate</td>
<td></td>
<td>12</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BGE</td>
<td>M</td>
<td>67</td>
<td>Breast cancer</td>
<td></td>
<td>Hypertension</td>
<td></td>
<td>Zoledronate</td>
<td></td>
<td>5</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DLV</td>
<td>M</td>
<td>70</td>
<td>Prostate cancer</td>
<td></td>
<td></td>
<td></td>
<td>Zoledronate</td>
<td></td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FN</td>
<td>F</td>
<td>62</td>
<td>Breast cancer</td>
<td></td>
<td></td>
<td></td>
<td>Zoledronate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FD</td>
<td>M</td>
<td>60</td>
<td>Kidney cancer</td>
<td>2011</td>
<td></td>
<td>No</td>
<td>Zoledronate</td>
<td>Suninib</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GL</td>
<td>F</td>
<td>85</td>
<td>Osteoporosis- Reumatoid arthritis</td>
<td>Aritmia - Gastritis</td>
<td>Zoledronate</td>
<td>Denosumab</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>F</td>
<td>70</td>
<td>Osteoporosis</td>
<td></td>
<td></td>
<td></td>
<td>Aledronate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM</td>
<td>F</td>
<td>70</td>
<td>Osteoporosis</td>
<td>2005</td>
<td>Hypertension</td>
<td>Yes</td>
<td>Aledronate</td>
<td></td>
<td>120</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>MP</td>
<td>F</td>
<td>72</td>
<td>Osteoporosis</td>
<td>2005</td>
<td>Hypertension</td>
<td>No</td>
<td>Aledronate</td>
<td></td>
<td>48</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>PC</td>
<td>F</td>
<td>77</td>
<td>Osteoporosis</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD</td>
<td>F</td>
<td>60</td>
<td>Breast cancer</td>
<td></td>
<td></td>
<td></td>
<td>Zoledronate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td>M</td>
<td>81</td>
<td>Prostate cancer</td>
<td></td>
<td></td>
<td></td>
<td>Zoledronate</td>
<td></td>
<td>9</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SA</td>
<td>F</td>
<td>76</td>
<td>Osteoporosis</td>
<td>2004</td>
<td></td>
<td></td>
<td>Aledronate</td>
<td></td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td>F</td>
<td>73</td>
<td>Osteoporosis</td>
<td>2000</td>
<td>Hypertension</td>
<td></td>
<td>Aledronate</td>
<td></td>
<td>164</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>SAM</td>
<td>F</td>
<td>75</td>
<td>Breast cancer</td>
<td>1997</td>
<td></td>
<td>Yes</td>
<td>Zoledronate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td>F</td>
<td>75</td>
<td>Osteoporosis</td>
<td></td>
<td>Hypertension</td>
<td></td>
<td>Aledronate</td>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VS</td>
<td>M</td>
<td>67</td>
<td>Reumatoid arthritis</td>
<td></td>
<td></td>
<td></td>
<td>Aledronate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIA</td>
<td>F</td>
<td>75</td>
<td>Osteoporosis</td>
<td>2005</td>
<td>Diabetes</td>
<td>No</td>
<td>Aledronate</td>
<td></td>
<td>120</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ZL</td>
<td>F</td>
<td>72</td>
<td>Breast cancer</td>
<td>2014</td>
<td>Venous thrombosis</td>
<td>Zoledronate</td>
<td></td>
<td></td>
<td>15</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
bleeding, considering that as a sign of viable, non-MRONJ affected bone (Figure 2C). Er:YAG laser was used with a mirror handpiece for non-contact application (R02) at a distance of about 0.8 cm corresponding to the same incidence on tissue for laser light and air-water spray with an energy of 200 mJ and a frequency of 20 Hz in Medium Short Pulse (Fluence/pulse: 39.80 J/cm²).

Diode laser 808 nm is a laser useful as a surgical device on soft tissues but also for biomodulation protocols depending on the parameters. It was used to perform biomodulating effect both intraoperative and postoperatively. The first session was performed just after suturing, while the subsequent ones were 2 times/week until suture removal on a completely closed surgical wound. Biomodulation was done with a 600 µm diameter fiber in scanning mode on the surgical site with 1 W of power in continuous mode during 1 minute for 5 times (Theoretical fluence: 21231 J/cm²).

Platelet Rich Plasma

Autologous platelet gel was prepared at the Department of Oncology and Hematology of the Hospital of Piacenza (Italy) during the planning of the surgery and stored until the day of the intervention. Multiple samples of whole blood were obtained from each patient and collected in 10 mL vacutainers. Blood was then centrifuged at 180 rpm per 10 to separate concentrated erythrocytes from PRP and then PRP was stored at -40°C.

The day of the surgery, PRP was maintained at room temperature until the use and just before that thrombin and calcium gluconate were added for platelets activation and gelling process acceleration.

PRP gel was used for each patient directly on the wound, absorbed on fibrin sponge or injected with a syringe after suture directly in the wound (Figures 2D-2E).

Results

Mean follow-up was 9.6 months. All the 21 patients (100%) experienced improvement of MRONJ with a transition to a lower stage of the Ruggero classification. Complete recovery was observed in 20 out of 21 patients (95.23%) (Figure 2F); one patient with mandibular BRONJ in Stage 3 and treated with the combined approach, healed completely and maintained the healing for 9 months then showed a recurrence of MRONJ on the site of intervention. All patients described a good post-operative comfort, not needing painkillers and reported the absence of bleeding and a rapid healing time. The histological evaluations performed demonstrated samples of good quality and without artifacts, allowing the confirmation of the clinical diagnosis (Table 2).

Discussion

Management of MRONJ is still a challenge for oral and maxillo-facial surgeons, particularly in relation with new anti-angiogenetic drugs as denosumab and sunitinib. Guidelines are today in agreement with the use of medical approach with antibiotics in all the cases, from Stage I to Stage III, in association or not with the surgical approach. In our experience, as reported elsewhere in the literature, an early surgical approach performed in Stage I MRONJ maybe efficient for the obtaining a complete healing with a minimally invasive surgical approach.

Er:YAG laser may represent a useful option in terms of reduction of invasiveness: in fact its wavelength allows the vaporization of necrotic bone with good control of bone removal because of its affinity for water and hydroxyapatite allowing a superficial action; in addition to affinity properties, the use of a handpiece with an air-water spray limits damages the tissue avoiding temperature increase at bone level in surgical site and with this thermal necrosis. These aspects are related to a good comfort during and after surgery for the patient with a reduction of postsurgical morbidity (with a reduction/elimination of pain and edema) and a better and faster healing. Aoki et al reported that Er:YAG laser used for bone surgery even with high-level irradiation may induce cell reactions, thanks to the scattering phenomena surrounding the

![Figure 2.](image-url)

Figure 2. (A) Removal of Bone Sequestrum. (B) Osteotomy Performed With the Piezosurgical Device. (C) Bone Bleeding After Vaporization With Er:YAG Laser. (D) Placement of Gelatinous PRP. (E) Suture With PRP on Site. (F) Complete Healing at 6 Months Follow up.
<table>
<thead>
<tr>
<th>Patient</th>
<th>MRONJ Stage</th>
<th>Site</th>
<th>Prostheses</th>
<th>Implants</th>
<th>Traditional Surgery</th>
<th>Er:YAG Surgery</th>
<th>Piezography</th>
<th>LLLT</th>
<th>Improvement</th>
<th>Healing</th>
<th>Stage</th>
<th>Follow Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>I</td>
<td>Mandible</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>BG</td>
<td>II</td>
<td>Maxilla</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>BGR</td>
<td>II</td>
<td>Maxilla</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>BGE</td>
<td>II</td>
<td>Maxilla</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>DLV</td>
<td>II</td>
<td>Mandible</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>FN</td>
<td>II</td>
<td>Mandible</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>FD</td>
<td>II</td>
<td>Mandible</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>GL</td>
<td>II</td>
<td>Mandible</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MA</td>
<td>II</td>
<td>Maxilla</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>MM</td>
<td>III</td>
<td>Mandible</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>MP</td>
<td>II</td>
<td>Maxilla</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PC</td>
<td>II</td>
<td>Mandible</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>RD</td>
<td>II</td>
<td>Mandible</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>SC</td>
<td>II</td>
<td>Mandible</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>SA</td>
<td>II</td>
<td>Mandible</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>SC</td>
<td>III</td>
<td>Maxilla</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>SAM</td>
<td>II</td>
<td>Mandible</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TA</td>
<td>III</td>
<td>Mandible</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>VS</td>
<td>II</td>
<td>Mandible</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>VIA</td>
<td>III</td>
<td>Mandible</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>ZL</td>
<td>I</td>
<td>Mandible</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
tissue irradiated, stimulating bone regeneration.32 Ninomiya et al reported a lower number of osteoclasts after pulsed laser irradiation as well as the activation of osteoblasts with increased bone formation.33 Pourzandarian et al reported a faster growth of cultures cells irradiated with an Er:YAG laser when compared with untreated groups thanks to the stimulation of gingival fibroblasts proliferation associated to an earlier mitosis and collagen fibril strands increment.35 In the combined treatment we performed on these patients, beyond the biostimulating effect of Er:YAG laser, we used a biomodulating approach with a diode laser (808 nm): this kind of approach, completely safe and comfortable for the patient, may help tissue healing through the stimulation of keratinocytes, osteoblasts and endothelial cells.54

The basis for the use of PRP is the addition of GFs as FGF, EGF, KGF, IGF, PDGF, transforming VEGF and TGF-β in suffering environments as bone exposed to the action of BFs and monoclonal antibodies; in this way, after the surgical ablation of necrotic bone and the decontamination of the surgical site, PRP may have the main role to induce tissue healing by cells chemotaxis, proliferation and differentiation, angiogenesis and deposition of new extracellular matrix.22 Sequential utilization of different high-technologies devices during all the steps of MRONJ treatment allows to perform a faster and less invasive surgery with a more comfortable postoperative healing process and it may represent a new and original approach for treating this severe adverse event.

Conflict of Interests

The authors state that there is no kind of conflict of interest regarding the publication of this paper.

Ethical Considerations

This is an observational study which Our Ethical Committee approval was not required. All treated patients signed an informed consent to the treatment performed.

References

Combined Approach for Jaws Osteonecrosis

47. Merigo E, Bouvet-Gerbettaz S, Boukhechba F, Roca

