• Logo
  • SBMUJournals

Effect of Surface Modification on Viability of L929 Cells on Zirconia Nanocomposite Substrat

Moluk Aivazi, Mohammadhosein Fathi, Farahnaz Nejatidanesh, Vajihesadat Mortazavi, Batoul Hashemibeni, Jukka Pekka Matinlinna




Introduction: Zirconia bioceramic can be considered for metallic replacement in dental implant applications. A proper method of surface modification may promote better osseointegration.
Methods: In study evaluated viability of fibroblast cell following surface treatment. Therefore, viability L929 cells were characterized using MTT assay and scanning electron microscopy.
Results: The viability assessment determined significant differences A-Y-TZP20 without surface treatment as compared to laser surface treatment (B), laser surface treatment + hydroxyapatite-yttrium stabilized tetragonal zirconia nanocomposite coat (C) and control. This study demonstrated that L929 cells approximately proliferated and spread on A-Y-TZP20 nanocomposite disk in laser surface treatment(B), Laser surface treatment + hydroxiapatite-yttrium stabilized tetragonal zirconia nanocomposite coat (C) groups similar to control group.
Conclusion: Laser surface treatment showed positive effect on the viability of L929 cells.


Alumina-yttrium stabilized tetragonal zirconia nanocomposite; Femtosecond laser; MTT assay; Endosseous dental implant.



YAMASHITA D, Machigashira M, Miyamoto M, Takeuchi H, Noguchi K, Izumi Y, Ban S. Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dental Materials Journal, 2009; 28: 461-470.

Olmedo DG, Tasat DR, Duff G, Guglielmotti MB, Cabrini RL. The issue of corrosion in dental implants: a review. Acta Odontol Journal, 2009; 22: 3-9.

Gehrke P, Dhom G, Brunner J, Wolf D, Degidi M, Piattelli A. Zirconium implant abutments:Fracture strength and influence of cyclic loading on retaining-screw loosening. Quintessence International Journal, 2006; 37: 41-48.

Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: An overview, Dental material journal, 2008; 24: 289-298.

Albrektsson T, Branemark PI, Hansson HA & Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-toimplant anchorage in man. Acta Orthopaedica Scandinavica, 1981; 52:155-170.

Novaesjr AB, Souza SLS, Barros RRM, Pereira KKY, Iezzi G, Piattelli A. Influence of Implant Surfaces on Osseointegration. Braz Dent J, 2010; 21: 471- 481.

Christenson EM, Anseth K S, Van denbeucken JJJP, Chan CK, Ercan B, Jansen JA, Laurencin CT, Li WJ, Murugan R, Nair LS, Ramakrishna S, Tuan RS, Webster TJ, Mikos TJ, Mikos AG. Nanobiomaterial applications in orthopedics. J Orthop Res .2007; 25: 11-22.

Basakova L, Stary V, Kofrova O, Lisa V. Polishing and coating carbon fiber-reinforced carbon

composites with a carbon-titanium layer enhances adhesion and growth of osteoblast-like MG63 cells and

vascular smooth muscle cells in vitro. J Biomed Mater Res.2001; 54: 567-578.

Kgang D, Lu J, Yao CH, Haberstroh KM, Webster TJ. The role of nanometer and sub-micron surface

Features on vascular and bone cell adhesion on titanium. Biomaterials J. 2008; 29: 970-983.

Liu H, Yazici H, Ergun C, Webster TJ, Bermek H. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. Acta Biomaterialia. 2008; 4:1472-1479.

Mendonca G, Mendonca DBS, Aragao FJL, Cooper LF. Advancing dental implant surface technology from micron- to nanotopography. Biomaterials J. 2008; 29: 3822-3835.

Webster TJ, Ergun C, Doremus RH, Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials J, 2000b; 21: 1803-1810.

Zhao G, Raines AL, Wieland M, Schwartz Z, Boyan BD. Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography.

Biomaterials J. 2007; 28: 2821-2829.

Webster TJ, Ergun C, Duremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res A. 2000a; 51: 475-483.

Dubruille JH, Viguier E, Le Naour G, Dubruille MT, Auriol M & Le Charpentier Y. Evaluation of combinations of titanium, zirconia, and alumina implants with 2 bone fillers in the dog. International Journal of Oral & Maxillofacial Implants. 1999; 14: 271–277.

Scarano A, Di Carlo F, Quaranta M & Piattelli A. Bone response to zirconia ceramic implants:an experimental study in rabbits. Journal of Oral Implantology. 2003; 29: 8–12.

Bachle M, Butz F, Hubner U, Bakalinis E, Kohal RJ. Behavior of CAL72 osteoblast-like cells cultured on zirconia ceramics with different surface topographies. Clin Oral Implants Res. 2007; 18: 53-59.

Fathi MH, Hanifi A. Sol-gel derived nanostructure hydroxiapatite powder and coating:aging time optimization. Advancces in applied ceramics. 2009; 108: 363-368.

Kohal RJ, Att W, Bachle M, Butz F. Ceramic abutments and ceramic oral implants. An update. Periodontology J. 2008; 47: 224–43.

Nakamura K, Kanno T, Milleding P, Ortengren U. Zirconia as a dental implant abutment material: a systematic review. Int J Prosthodont. 2010; 23: 299–309.

Ekfeldt A, Furst B, Carlsson GE. Zirconia abutments for single-tooth implant restorations: a retrospective and clinical follow-up study. Clin Oral Implants Res. 2011; 22:1308-14.

Nebe B, Forster C, Pommerenke H, Fulda G, Behrend D, Bernewski U, Schmitz KP, Rychly J. Structural alterations of adhesion mediating components in cells cultured on polybeta-hydroxy butyric acid. Biomaterials J. 2001; 22: 2425-2434.

Delgado-Ruíz RA, Calvo-Guirado JL, Moreno P, Guardia J, Gomez-Moreno G, Mate-Sánchez JE, et al. Femtosecond laser microstructuring of zirconia dental implants. J Biomed Mater Res B Appl Biomater. 2011; 96: 91 - 100.