The utility of biomarkers for the action of endothelium and epithelium of the pulmonary microvascularis is unknown (1). The biomarkers in acute respiratory distress syndrome (ARDS) can effect either cellular activation or cell injury and have an important role in ARDS treatment (2). ARDS patients have an executive phase with some degrees of damage like edema and necroses. Then, fibro-proliferative phase will happen. To understand the mechanism of repair, we focus on the function of alveolar type I (3).

Inflammatory cytokines

The inflammatory response in ARDS can be either direct (like pneumonia) or indirect (like systemic inflammation). The antigenic levels of inflammatory biomarkers are more important than balance with them. One of the most important cytokines in the early phase of ARDS is IL-1 β; which causes release of pro-inflammatory chemokine leading to edema; it is increased in plasma; it could be a therapeutic target (3). Another pro-inflammatory cytokine is TNF-α, stimulating other immune cells. Pharmacological agents are modulated by TNF-α and also, it can cause pulmonary edema (3). Finally, IL-6 and IL-8 are two other pro-inflammatory cytokines. IL-8 plays an important role in some immune cells. Possibly, the level of these interleukins in bronchoalveolar lavage fluid (BALF) is associated with mortality (4). Some studies show a mixture of IL-8 and IL-8 autoantibody has inhibitory action on neutrophil recruitment and has ability via the FcγRIIa to possess pro-inflammatory activities. The pathway of this cytokine and immune complex can be used for therapeutic purposes (5-7). There are other cytokines that possess anti-inflammatory actions. The research is done for using them as therapeutic targets. In addition, there is an important effect of endogenous anti-inflammatory soluble receptors.

Coagulation and Fibrinolysis

Activation of the inflammatory cascade results in activation of the coagulation system. May be there would be a role in the coagulation system in treatment of ARDS; including activated protein C: APC (7). However, the role of platelets could not be neglected while they are related with different cytokines (8).

Growth factors

This factor plays a major role in the repair and resolution of ARDS with an unknown mechanism. Different immune cells and a wide range of mediators have interactions to produce their effects. Growth factors targeted in ARDS either works through tyrosine kinase receptors or serine-threonine kinase receptors (9-11).

Biomarkers of alveolar epithelial/endothelial Injury

The alveolar epithelium type I and II have a crucial role in acute lung injury and its healing. Clara cells, on the other hand, secrete a protein named “Clara Cell specific protein”; endothelial dysfunction has an important role in lung injury (12, 13).

Seyed Mohamadreza Hashemian
Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Makan Sadr
Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Ali Dabbagh
Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

*Corresponding Author: Seyed Mohamadreza Hashemian, MD; Masih Daneshvari Hospital, Tehran, Iran. Tel: (+98)-912 1119279; Email: smrhashemian@yahoo.com.

References

1. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD,