Diagnostic Performance of Brain Natriuretic Peptide in Patients Suspected to Sepsis

Mitra Barati 1,*, Leila Farnia 2; Mohammad Ali Eshaghi 3; Mahshid Talebi-Taher 4; Newsha Farhadi 5

1Research Center of Pediatric Infectious Diseases, Iran University of Medical Sciences, Tehran, IR Iran
2Department of Internal Diseases, Iran University of Medical Sciences, Tehran, IR Iran
3Department of Infectious Diseases, Iran University of Medical Sciences, Tehran, IR Iran
4Department of Infectious Diseases, Antimicrobial Resistance Research Center, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, IR Iran
5Department of Internal Medicine, Faculty of Medicine, Shahed University, Tehran, IR Iran

*Corresponding author: Mitra Barati, Research Center of Pediatric Infectious Diseases, Iran University of Medical Sciences, Tehran, IR Iran. Tel: +98-9121065388, Fax: +98-2166509073, E-mail: mitra_baraty@yahoo.com

Received: July 12, 2013; Revised: August 9, 2013; Accepted: September 22, 2013

Background: One of the main components involving in the pathogenesis and prognosis of sepsis and septic shock is natriuretic peptide. Hemodynamic changes in sepsis or septic shock might explain increased plasma levels of these peptides circulations.

Objectives: The present study aimed to assess the value of brain natriuretic peptide (BNP) in prediction of sepsis state and its related morbidity. We also attempted to determine the best cutoff point of BNP for diagnosis of sepsis state in those with critical illnesses, admitted to the hospital.

Patients and Methods: In a cross-sectional study on critically ill patients referred to infections unit of Hazrat Rasoul Akram Hospital, the enrolled patients were assigned to one of the sepsis (n = 30) and nonsepsis (n = 30) groups, based on their results of blood culture and clinical manifestations. Plasma level of BNP was measured by immunoassay.

Results: In-hospital mortality was only observed in one patient suffering from sepsis. Hospital length of stay (LOS) was significantly longer in the sepsis group compared with the nonsepsis one (17.47 ± 10.10 days versus 7.93 ± 2.92 days). The plasma BNP level, as a marker, was significantly higher in the sepsis group than the nonsepsis one (786.87 ± 164.11 ng/mL versus 154.57 ± 44.67 ng/mL, P = 0.039). The BNP level was significantly correlated with some baseline variables including respiratory rate (beta = 0.295, P = 0.022) and ESR measurement (beta = 0.296, P = 0.022), but not with other characteristics. Through multivariable linear regression analysis, having other patients’ variables information including demographics and hemodynamic parameters, the BNP level was significantly higher in the sepsis group compared with the nonsepsis one (odds ratio = 1.008, P = 0.046). According to the receiver operating characteristic (ROC) curve analysis, BNP measurement had an acceptable value for discriminating sepsis and nonsepsis states (c = 0.734, 95% CI: 0.605-0.864, P = 0.002). The optimal cutoff point of BNP for discriminating sepsis and nonsepsis states was 170 ng/mL, yielding a sensitivity of 66.7% and a specificity of 60.0%.

Conclusions: Elevated BNP level was associated with a significantly increased risk of sepsis state in critically ill patients.

Keywords: Natriuretic Peptide, Brain; Sepsis; Systemic Inflammatory Response Syndrome
sides, a positive association between cardiac dysfunction indices and elevated plasma levels of natriuretic peptides, especially BNP, has been reported (7, 8). These findings suggest that these peptides especially BNP might reflect and predict presence of sepsis and septic shock as well as their related mortality and morbidity.

2. Objectives

The present study aimed to assess the value of BNP in prediction of sepsis state and its related morbidity. We also attempted to determine the best cutoff point of BNP for diagnosis of sepsis state in those with critical illnesses, admitted to the hospital.

3. Patients and Methods

In a cross-sectional study on critically ill patients referred to the infectious unit of Hazrat Rasoul Akram Hospital, the enrolled patients were assigned to one of the sepsis (n = 30) or nonsepsis (n = 30) groups, based on their results of blood culture and clinical manifestations. Therefore, final diagnosis of sepsis in the admitted patients was based on presence of positive blood culture or at least two of the following criteria: 1) fever or hypothermia, 2) heart rate > 90 per minute, 3) respiratory rate > 20 per minute, and 4) leukocytosis (white blood cell count > 12000 mm3) or leucopenia (white blood cell count < 4000 mm3). The control group members were selected from other admitted patients with diagnoses other than sepsis. Initially, targets of the study were explained to the subjects and written informed consents were obtained from all. The first assessments included blood culture, cell blood count, ESR and CRP, and evaluation of vital signs. In the next step, plasma level of BNP was measured using immunoassay with sensitivity of 5.25 ng/L and acceptable upper and lower limitations of 10 to 3800 ng. All findings were finally assessed by two specialists of the sepsis and nonsepsis states. For the statistical analysis, the statistical software SPSS version 19.0 for Windows (SPSS Inc., Chicago, IL) was used. p values of 0.05 or less were considered statistically significant.

4. Results

Baseline characteristics of the study groups are presented in Table 1. Mean age of the participants was 59.78 ± 21.82 years in the sepsis group and 42.73 ± 19.87 years in the control group. No difference was found in the male distribution between the two groups (53.3% versus 66.7%). The most frequent etiologies of sepsis were pneumonia (43.3%), followed by urosepsis (40.0%) and wound infection (6.7%). Positive blood culture was only revealed in 30.0% of the septic group. The average of white blood cell count, neutrophil percentage, ESR and CRP were all significantly higher in the septic group than the control group. Prevalence of diabetes mellitus was also higher in the septic group, while no differences were observed in prevalence of other underlying disorders including hypertension, hyperlipidemia, cerebrovascular events, and renal failure. In-hospital mortality was only observed in one patient suffering from sepsis. LOS was significantly longer in the sepsis group than the nonsepsis one (17.47 ± 10.10 days versus 7.93 ± 2.92 days). The plasma BNP level, as a marker, was significantly higher in the septic group than the nonsepsis one (786.87 ± 164.11 ng/mL versus 154.57 ± 44.67 ng/mL, $p = 0.039$). The level of BNP was significantly correlated with some baseline variables including respiratory rate (beta = 0.295, $p = 0.022$) and ESR measurement (beta = 0.296, $p = 0.022$), but not with other characteristics. Through multivariable linear regression analysis, having other patients’ variables information, including demographics and hemodynamic parameters, the BNP level was significantly higher in the septic group compared with the nonseptic one (odds ratio = 1.008, 95% CI = 1.000-1.016, $p = 0.046$). According to the ROC curve analysis (Figure 1), BNP measurement had an acceptable value for discriminating sepsis and nonsepsis states ($c = 0.734$, 95% CI: 0.605-0.864, $p = 0.002$). The optimal cutoff point of BNP for discriminating sepsis and nonsepsis states (Figure 2) was 170 ng/mL, yielding a sensitivity of 66.7% and a specificity of 60.0%.

5. Discussion

The present study showed that elevated BNP level was associated with significantly increased risk of sepsis state in critically ill patients referred to hospital. It was consistent with other studies (9-14). As such, measurement of BNP may be a simple method of risk stratification in septic patients (15). Some studies showed that BNP level elevation in patients with sepsis can be considerably high, even though cardiac depression is not obvious. This event can occur following sepsis-induced biventricular dilatation (16, 17), stimulation of lipopolysaccharide (17) to maximize the sensitivity and specificity of discriminating sepsis and nonsepsis states. For the statistical analysis, the statistical software SPSS version 19.0 for Windows (SPSS Inc., Chicago, IL) was used. p values of 0.05 or less were considered statistically significant.
Table 1. Baseline Characteristics in the Study Populations With and Without Sepsis (n = 30) a, b

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Sepsis Group</th>
<th>Nonsepsis Group</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>16 (53.3)</td>
<td>20 (66.7)</td>
<td>0.292</td>
</tr>
<tr>
<td>Age, y</td>
<td>59.87 ± 21.82</td>
<td>42.73 ± 19.78</td>
<td>0.002</td>
</tr>
<tr>
<td>Medical history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>6 (20.0)</td>
<td>7 (23.3)</td>
<td>0.754</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>8 (26.7)</td>
<td>1 (3.3)</td>
<td>0.011</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>1 (3.3)</td>
<td>1 (3.3)</td>
<td>0.999</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>1 (3.3)</td>
<td>0 (0.0)</td>
<td>0.999</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>2 (6.7)</td>
<td>0 (0.0)</td>
<td>0.492</td>
</tr>
<tr>
<td>Heart failure</td>
<td>0 (0.0)</td>
<td>1 (3.3)</td>
<td>0.999</td>
</tr>
<tr>
<td>Others</td>
<td>2 (6.7)</td>
<td>3 (10.0)</td>
<td>0.999</td>
</tr>
</tbody>
</table>

Inflammatory markers			
ESR	56.43 ± 20.48	16.67 ± 6.05	< 0.001
CRP	67.27 ± 31.39	7.40 ± 2.18	< 0.001
WBC	14430 ± 4504	75.36 ± 2171	< 0.001
Neutrophil	85.59 ± 8.76	72.33 ± 12.42	< 0.001

a Abbreviations: CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; WBC, white blood cell.

b Data are presented in mean ± SD or No. (%).

Figure 1. Receiver Operator Characteristic Curves Were Constructed to Investigate the Diagnostic Power of BNP for Predicting Sepsis

Figure 2. Optimal Cutoff Value of BNP for Prediction of Sepsis and Nonsepsis States

The best cutoff point for BNP was 170 ng/mL.

or proinflammatory cytokines (18, 19), volume resuscitation (20), and sepsis-associated acute lung injury or acute respiratory distress syndrome (21). Clinical severity scores such as acute physiology and chronic health evaluation (APACHE) II as well as sequential organ failure assessment (SOFA) scores have been validated as poor-outcome stratifications in patients with sepsis, but are unwieldy and tend to be used more for audit and research than clinical decision making. Therefore, a rapidly available biochemical test that provides similar or better prognostic information could be useful. Several studies (22, 23) showed that BNP level was related to APACHE II and SOFA scores. In some observations, comparison of prognostic value of BNP with clinical severity scores suggested BNP as a good prognostic marker in predicting sepsis state and its mortality and morbidity. In the present study, pooled sensitivity and specificity of the elevated BNP level for predicting sepsis state were 66.7% and 60%, respectively, which was consistent with other studies mentioned in
a recent meta-analysis (10). So far, none of the proposed prognostic markers had sufficient (more than 90%) sensitivity and specificity to predict which patients were at greater risk of death due to sepsis (24). Accordingly, a BNP measurement may provide a better prognostic value in combination with other biomarkers, each mirroring different pathophysiological aspects. Further study is required to verify this hypothesis and evaluate the cost-effectiveness in sepsis.

Acknowledgements
We would like to thank Mrs. A. Tabatabaei for her excellent and helpful technical assistance.

Authors’ Contributions
Mitra Barati: concepts, design, clinical studies, manuscript preparation, manuscript review; Leila Farni: concepts, clinical studies, data acquisition, data analysis, statistical analysis, manuscript preparation; Mohammad Ali Eshaghi: concepts, definition of intellectual content, manuscript review; Mahshid Talebi-Taher: concepts, definition of intellectual content, manuscript review. Newsha Farhadi: literature search, data acquisition, data analysis.

Financial Disclosure
The authors had no proprietary interest in any aspect of this study.

Funding/Support
The study was financially supported by Research Center of Pediatric Infectious Diseases, Iran University of Medical Sciences.

References