A Novel Scheme for Optimal Control of a Nonlinear Delay Differential Equations Model to Determine Effective and Optimal Administrating Chemotherapy Agents in Breast Cancer

HR Ramezanpour--- Amirkabir University of Technology, Tehran, Iran,
S Setayeshi--- Amirkabir University of Technology, Tehran, Iran,
ME Akbari--- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract


341

Background: Determining the optimal and effective scheme for administrating the chemotherapy agents in breast cancer is the main goal of this scientific research. The most important issue here is the amount of drug or radiation administrated in chemotherapy and radiotherapy for increasing patient's survival. This is because in these cases, the therapy not only kills the tumor cells, but also kills some of the healthy tissues and causes serious damages. In this paper we investigate optimal drug scheduling effect for breast cancer model which consist of nonlinear ordinary differential time-delay equations.

 

Methods: In this paper, a mathematical model of breast cancer tumors is discussed and then optimal control theory is applied to find out the optimal drug adjustment as an input control of system. Finally we use Sensitivity Approach (SA) to solve the optimal control problem.

 

Results: The goal of this paper is to determine optimal and effective scheme for administering the chemotherapy agent, so that the tumor is eradicated, while the immune systems remains above a suitable level. Simulation results confirm the effectiveness of our proposed procedure.

 

Conclusion: In this paper a new scheme is proposed to design a therapy protocol for chemotherapy in Breast Cancer. In contrast to traditional pulse drug delivery, a continuous process is offered and optimized, according to the optimal control theory for time-delay systems.

 

Key words: Breast Neoplasm; Chemotherapy; Immune system; Optimal control

Please cite this article as: Ramezanpour HR, Setayeshi S, Akbari ME. A Novel Scheme for Optimal Control of a Nonlinear Delay Differential Equations Model to Determine Effective and Optimal Administrating Chemotherapy Agents in Breast Cancer. Iran J Cancer Prev.2011;Vol4,No4,P154-162.

References

1. American Cancer Society. Breast Cancer Facts and Figures  2005-2006,  Atlanta,  American  Cancer  Society Inc., 2005.

2. Lux  MP,  Fasching  PA,  Beckman  MW.  Hereditary

breast    and    ovarian    cancer:    review    and    future perspectives. J Mol Med. 2006; 84: 16-24.

3. Akbari  ME.  Iran  Cancer  Report.  Cancer  Research Center, Shahid Beheshti University of Medical Sciences; Tehran; Qom: Darolfekr; 2008.

4. Five and Ten Years Survival in Breast Cancer Patients

Mastectomies vs. Akbari ME, Khayamzadeh M, Khoshnevis SJ, Nafisi N, Akbari A .Breast Conserving Surgeries Personal Experience. Iran J Cancer Prev. 2008; 1(2):53-7.

5. Movahedia   M,Haghighat   Sh,   Khayamzadeh   M,

Moradi A, Ghanbari Motlagh A, Mirzaei H, Akbari ME. Survival rate of Breast cancer in Iran. Cancer Research Center, Shahid Beheshti University of Medical Sciences (Un published data).

6. Murray    JM.    Optimal    Control   for    a    Cancer Chemotherapy Problem with General Growth and Loss Functions, Mathematical Biosciences. 1990; 98; 273-87.

7. Villasana M. A Delay Deferential Equation Model for

Tumor Growth.  Ph.D.  Dissertation;  Claremont  University;

2001.

8. Swanson KR, Alvord EC. A Quantitative Model for

Differential  Motility  of  Gliomas  in  Grey  and  White

Matter, Cell Proliferation. 2000; 33 (5): 317-29.

9. Kansal  AR,  Torquato  S,  Harsh  GR,  Chiocca  EA, Deisboeck TS. Simulated Brain Tumor Growth Dynamics Using a Three-Dimensional Cellular Automaton, Journal of Theoretical Biology. 2000; 203 (4): 367-82.

 

10. Kansal  AR,  Torquato  S.  Cellular  Automaton  of

Idealized  Brain  Tumor  Growth  Dynamics,  Biosystems.

2000; 55 (13): 119-27.

11. Gerlee P, Anderson ARA. An Evolutionary Hybrid

Cellular Automaton Model of Solid Tumor Growth. Journal of Theoretical Biology. 2007; 246 (4): 583-603.

12. Anderson  ARA,  Chaplain  MAJ.  Continuous  and Discrete     Mathematical      Models   of         Tumor    Induced Angiogenesis. Bulletin of Mathematical Biology. 1998; 60 (5): 857-99.

13. Enderling H, Anderson ARA. Mathematical Modeling

of  Radiotherapy  Strategies  for  Early  Breast  Cancer. Journal of Theoretical Biology. 2006; 241 (1): 158-71.

14. De Pillis LG, Radunskaya AE. The Dynamics of an Optimally Controlled Tumor Model: A Case Study. Mathematical and Computer Modeling. 2003; 37: 1221-

44.

15. De  Pillis  LG,  Gu  W,  Radunskaya  AE.  Mixed Immunotherapy and Chemotherapy of Tumors: Modeling, Applications and Biological Interpretations. Journal of Theoretical Biology. 2006; 238 (4): 841-62.

16. De Pillis LG, Yoshida. Chemotherapy for Tumors: An Analysis of the Dynamics and a Study of Quadratic and Linear Optimal Controls. Mathematical Biosciences. 2007;

209: 292-315.

17. Villasana M, Ochoa G. Heuristic Design of Cancer Chemotherapies,      IEEE       Transactions        of         Evolutionary Computation. 2004; 8: 513-21.

18.  Yaa R. Dynamics Analysis and Limit Cycle in a

Delayed  Model  for  Tumor  Growth  with  Quiescence. Nonlinear Analysis: Modeling and Control. 2006; 11:  95-

110.

 

19. Acharya   R,   Sundareshan   M.   Development   of Optimal Drug Administration Strategies for Cancer Chemotherapy in the Framework of Systems Theory. Int J Biomed Comput. 1984; 15 (2): 139-50.

20. Swan G. Role of Optimal Control Theory in Cancer

Chemotherapy. Math Biosci. 1990; 101 (2): 237-84.

21. Pillis L, Radunskaya A. A Mathematical Tumor Model with Immune Resistance and Drug Therapy: An Optimal Control Approach. J Theor Med. 2011; 3: 79-100.

22.  Castiglione F, Piccoli B. Optimal Control in a Model of Dendritic Cell Transfect ion Cancer Immunotherapy. Bull. Math. Biol. 2006; 68: 255–74.

23.  Martin  RB.  Optimal  Control  Drug  Scheduling  of

Cancer Chemotherapy. Automatica. 1992; 28: 1113-23.

24.  Kirschner D, Panetta JC. Modeling Immunotherapy

of Tumor-Immune Interaction. J Math Biol. 1998; 37: 235-

52.

25. Swierniak A, Ledzewicz U, Schattler H. Optimal Control for a Class of Compartmental Models in Cancer Chemotherapy. Int J Appl Math Comp Sci. 2003; 13 (3):

357-68.

26.  Burden T, Ernstberger J, Fister KR. Optimal Control

Applied to Immunotherapy. Discrete Contin Dyn S B. 2004;

4 (1): 135-46.

27.  Fister KR, Donnelly JH. Immunotherapy: an Optimal

Control Theory Approach. Math. Biosci. Eng. 2005; 2 (3):

499-510.

28. Newbury  G.  A  Numerical  Study  of  a  Delay Deferential Equation Model for Breast Cancer, MSc thesis. Virginia Polytechnic Institute and State University. 2007.

29.  Tang GY, Luo ZW. Suboptimal Control of Systems with State Time-Delay. IEEE. 1999.


Full Text:

PDF

134