• Logo
  • SBMUJournals

The Homology Modeling and Docking Investigation of Human Cathepsin B

Afshin Khara, Ehsan Jahangirian, Hossein Tarrahimofrad
164

Views


Abstract

Background: Cathepsin B comprises a group of lysosomal cysteine proteases belonging to the Papain family; it has an intracellular function in the process of protein catabolism, antigen processing in the immune response, and Alzheimer’s disease. In cancers, cathepsin B interferes with autophagy and intracellular catabolism, and breaks down extracellular matrix, decreases protease inhibitors expression, and ultimately helps to accelerate metastasis, tumor malignancy, and reduce immune resistance.
Methods: In this study, the 3D structure of cathepsin B was constructed using modeler and Iterative Threading ASSEmbly Refinement (I-TASSER), based on similarity to the crystallographic model of procathepsin B (1PBH). Then, the predicted cathepsin B model was evaluated using PROCHECK and PROSA for quality and reliability. Molecular studies suggested that the amino acids cysteine 108, histidine 189, and histidine 190 form the envelope of the active site of cathepsin B. The docking studies of cathepsin B was performed with protease inhibitors cystatin C, E-64 and leupeptin.
Results: The lowest binding energy was related to the cathepsin B-E-64 complex. Accordingly, it was found that E64 interacts with the amino acid cysteine 108 of the active site of cathepsin B. Leupeptin made 2 hydrogen bonds with cathepsin B, but none with the active site of cathepsin amino acids. Cystatin C established a hydrogen bond with the arginine 18 of cathepsin B and made electrostatic bonds with aspartate 148 of cathepsin B.
Conclusion: Therefore, the bioinformatics and docking studies of cathepsin B with its inhibitors could be used as reliable identification, treatment, and alternative methods for selecting the inhibitors and controllers of cancer progression.


Keywords

Cathepsins, Cysteine, Cysteine Proteinase Inhibitors

References

Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, et al. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 2012; 1824(1):68-88. [DOI:10.1016/j.bbapap.2011.10.002] [PMID]

Calkins CC, Sameni M, Koblinski J, Sloane BF, Moin K. Differential localization of cysteine protease inhibitors and a target cysteine protease, cathepsin B, by immuno-confocal microscopy. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society. 1998; 46(6):745-51. [DOI:10.1177/002215549804600607] [PMID]

Bell-McGuinn KM, Garfall AL, Bogyo M, Hanahan D, Joyce JA. Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer. Cancer Research. 2007; 67(15):7378-85. [DOI:10.1158/0008-5472.CAN-07-0602] [PMID]

Fonović M, Turk B. Cysteine cathepsins and their potential in clinical therapy and biomarker discovery. Proteomics. Clinical Applications. 2014; 8(5-6):416-26. [DOI:10.1002/prca.201300085] [PMID]

Turk V, Stoka V, Turk D. Cystatins: Biochemical and structural properties, and medical relevance. Frontiers in Bioscience: A Journal and Virtual Library. 2008; 13:5406-20. [DOI:10.2741/3089] [PMID]

Sokol JP, Schiemann WP. Cystatin C antagonizes transforming growth factor beta signaling in normal and cancer cells. Molecular Cancer Research. 2004; 2(3):183-95. [PMID]

Goulet B, Sansregret L, Leduy L, Bogyo M, Weber E, Chauhan SS, et al. Increased expression and activity of nuclear cathepsin L in cancer cells suggests a novel mechanism of cell transformation. Molecular Cancer Research. 2007; 5(9):899-907. [DOI:10.1158/1541-7786.MCR-07-0160] [PMID]

Barrett AJ, Kembhavi AA, Brown MA, Kirschke H, Knight CG, Tamai M, et al. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. The Biochemical Journal. 1982; 201(1):189-98. [DOI:10.1042/bj2010189] [PMID] [PMCID]

Katunuma N, Kominami E. Structure, properties, mechanisms, and assays of cysteine protease inhibitors: Cystatins and E-64 derivatives. Methods in Enzymology. 1995; 251:382-97. [DOI:10.1016/0076-6879(95)51142-3]

Gasteiger E, Hoogland C, Gattiker A, Duvaud Se, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the expasy server. In: Walker JM, editor. The Proteomics Protocols Handbook. Totowa, NJ: Humana Press; 2005. [DOI:10.1385/1-59259-890-0:571]

Dyrløv Bendtsen J, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology. 2004; 340(4):783-95. [DOI:10.1016/j.jmb.2004.05.028] [PMID]

Ceroni A, Passerini A, Vullo A, Frasconi P. DISULFIND: A disulfide bonding state and cysteine connectivity prediction server. Nucleic Acids Research. 2006; 34(Web Server Issue):W177-81. [DOI:10.1093/nar/gkl266] [PMID] [PMCID]

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols. 2015; 10:845. [DOI:10.1038/nprot.2015.053] [PMID] [PMCID]

Wass MN, Kelley LA, Sternberg MJ. 3DLigandSite: Predicting ligand-binding sites using similar structures. Nucleic Acids Research. 2010; 38(Web Server Issue):W469-73. [DOI:10.1093/nar/gkq406] [PMID] [PMCID]

Zhang C, Freddolino PL, Zhang Y. COFACTOR: Improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Research. 2017; 45(W1):W291-9. [DOI:10.1093/nar/gkx366] [PMID] [PMCID]

Roy A, Yang J, Zhang Y. COFACTOR: An accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Research. 2012; 40(Web Server Issue):W471-7. [DOI:10.1093/nar/gks372] [PMID] [PMCID]

Pontius J, Richelle J, Wodak SJ. Deviations from standard atomic volumes as a quality measure for protein crystal structures. Journal of Molecular Biology. 1996; 264(1):121-36. [DOI:10.1006/jmbi.1996.0628] [PMID]

Wiederstein M, Sippl MJ. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research. 2007; 35(Suppl. 2):W407-10. [DOI:10.1093/nar/gkm290] [PMID] [PMCID]

Sippl MJ. Recognition of errors in three-dimensional structures of proteins. Proteins: Structure, Function, and Bioinformatics. 1993; 17(4):355-62. [DOI:10.1002/prot.340170404] [PMID]

Depristo MA, de Bakker PI, Johnson RJ, Blundell TL. Crystallographic refinement by knowledge-based exploration of complex energy landscapes. Structure. 2005; 13(9):1311-9. [DOI:10.1016/j.str.2005.06.008] [PMID]

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF chimera--a visualization system for exploratory research and analysis. Journal of Computational Chemistry. 2004; 25(13):1605-12. [DOI:10.1002/jcc.20084] [PMID]

Laskowski RA, Swindells MB. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling. 2011; 51(10):2778-86. [DOI:10.1021/ci200227u] [PMID]

Mohamed MM, Sloane BF. Multifunctional enzymes in cancer. Nature Reviews Cancer. 2006; 6(10):764-75. [DOI:10.1038/nrc1949] [PMID]

Szpaderska AM, Frankfater A. An intracellular form of cathepsin B contributes to invasiveness in cancer. Cancer Research. 2001; 61(8):3493-500. [PMID]

Kopitz C, Anton M, Gansbacher B, Krüger A. Reduction of experimental human fibrosarcoma lung metastasis in mice by adenovirus-mediated cystatin C overexpression in the host. Cancer Research. 2005; 65(19):8608-12. [DOI:10.1158/0008-5472.CAN-05-1572] [PMID]

Palermo C, Joyce JA. Cysteine cathepsin proteases as pharmacological targets in cancer. Trends in Pharmacological Sciences. 2008; 29(1):22-8. [DOI:10.1016/j.tips.2007.10.011] [PMID]

Cimerman N, Prebanda MT, Turk B, Popovič T, Dolenc I, Turk V. Interaction of cystatin C variants with papain and human cathepsins B, H and L. Journal of Enzyme Inhibition. 1999; 14(2):167-74. [DOI:10.3109/14756369909036552] [PMID]

Costantino CM, Ploegh HL, Hafler DA. Cathepsin S regulates class II MHC processing in human CD4+ HLA-DR+ T cells. The Journal of Immunology. 2009; 183(2):945-52. [DOI:10.4049/jimmunol.0900921] [PMID] [PMCID]

Saino T, Someno T, Ishii S, Aoyagi T, Umezawa H. Protease-inhibitory activities of leupeptin analogues. The Journal of Antibiotics. 1988; 41(2):220-5. [DOI:10.7164/antibiotics.41.220] [PMID]

Wadhawan M, Singh N, Rathaur S. Inhibition of cathepsin B by E-64 induces oxidative stress and apoptosis in filarial parasite. PLOS ONE. 2014; 9(3):e93161. [DOI:10.1371/journal.pone.0093161] [PMID] [PMCID]

Sutherland JH, Greenbaum LM. Paradoxical effect of leupeptin in vivo on cathepsin B activity. Biochemical and Biophysical Research Communications. 1983; 110(1):332-8. [DOI:10.1016/0006-291X(83)91300-1]

Baici A, Gyger-Marazzi M. The slow, tight-binding inhibition of cathepsin B by leupeptin. A hysteretic effect. European Journal of Biochemistry. 1982; 129(1):33-41. [DOI:10.1111/j.1432-1033.1982.tb07017.x] [PMID]

Hashimoto Y. Gelatin zymography using leupeptin for the detection of various cathepsin l forms. Methods in Molecular Biology (Clifton, NJ). 2017; 1594:243-54. [DOI:10.1007/978-1-4939-6934-0_16] [PMID]

Yamamoto A, Tomoo K, Matsugi K, Hara T, In Y, Murata M, et al. Structural basis for development of cathepsin B-specific noncovalent-type inhibitor: Crystal structure of cathepsin B-E64c complex. Biochimica et Biophysica Acta. 2002; 1597(2):244-51. [DOI:10.1016/S0167-4838(02)00284-4]

Nandy SK, Seal A. Structural dynamics investigation of human family 1 & 2 cystatin-cathepsin l1 interaction: A comparison of binding modes. PLOS ONE. 2016; 11(10):e0164970. [DOI:10.1371/journal.pone.0164970] [PMID] [PMCID]




DOI: https://doi.org/10.32598/ijmtfm.v10i1.26687