• Logo
  • SBMUJournals

Optimization and Validation of a novel Nebulizer-assisted Liquid Phase Microextraction Followed by HPLC-DAD for Diazinon Analysis in Plasma Samples

Reza Mohammadzaheri, Mehdi Ansari Dogaheh, Maryam Kazemipour, Kambiz Soltaninejad
121

Views

PDF

Abstract

Background: Diazinon is among the most prevalently used broad-spectrum organophosphates insecticides. Diazinon toxicity depends on its blood concentration. The current study aimed to extract and determine diazinon in plasma samples using a new Nebulizer -Assisted Liquid-Phase Microextraction followed by High-Performance Liquid Chromatography with Diode-Array Detection (NALPME-HPLC-DAD).
Methods: Several effective parameters, including the type and volume of extracting solvent, pH, surfactant, salt amount, and nebulizing, were evaluated and optimized to find the best condition for the extraction and determination of diazinon in plasma samples using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD). Additionally, the Plackett-Burman design was employed in preliminary experiments to screen the most appropriate parameters. Furthermore, we selected a central composite design to determine the best experimental conditions in NALPME-HPLC-DAD.
Results: In an optimum condition, 412 μL of toluene (as extracting solvent) and nebulizing with nitrogen gas as dispersing and emulsification, sodium lauryl sulfate (2.8% w/v) and 100μL sodium chloride (1.5% w/v) in pH 8.1 were selected. The standard calibration curves for diazinon were linear with the concentration range of 0.5–4 µg/mL with a correlation coefficient of 0.9992. The Limit Of Detection (LOD) and Limit Of Quantification (LOQ) for diazinon were 0.123 µg/mL and 0.372 µg/mL, respectively.
Conclusion: The proposed method was simple, accurate, precise, and sensitive for analyzing diazinon in the plasma samples. This method can be used for analyzing plasma diazinon concentrations in acute poisoning cases in clinical and forensic toxicology analyses.


Keywords

Diazinon, Nebulizer-assisted liquid phase microextraction, High-performance liquid chromatography, Plasma, Determination

References

‎1.‎ Adinew GM, Asrie AB, Birru EM. Pattern of acute organophosphorus poisoning at university of gondar teaching hospital, ‎Northwest Ethiopia. BMC Research Notes. 2017; 10:149. [DOI:10.1186/s13104-017-2464-5] [PMID] [PMCID]‎

‎2.‎ Razwiedani LL, Rautenbach P. Epidemiology of organophosphate poisoning in the Tshwane district of South Africa. Environmental ‎Health Insights. 2017; 11:1178630217694149. [DOI:10.1177/1178630217694149] [PMID] [PMCID]‎

‎3.‎ Acikalin A, Dişel NR, Matyar S, Sebe A, Kekec Z, Gokel Y, et al. Prognostic factors determining morbidity and mortality in ‎organophosphatepoisoning. Pakistan Journal of Medical Sciences. 2017; 33(3):534-9. [DOI:10.12669/pjms.333.12395] [PMID] ‎‎[PMCID]‎

‎4.‎ Soltaninejad K, Shadnia S. History of the use and epidemiology of organophosphorus poisoning. InBasic and Clinical Toxicology of ‎Organophosphorus Compounds. London: Springer; 2014. [DOI:10.1007/978-1-4471-5625-3_2]‎

‎5.‎ Çolak Ş, Erdoğan MÖ, Baydin A, Afacan MA, Kati C, Duran L. Epidemiology of organophosphate intoxication and predictors of ‎intermediate syndrome. Turkish Journal of Medical Sciences. 2014; 44(2):279-82. [DOI:10.3906/sag-1211-31] [PMID]‎

‎6.‎ Pandit V, Seshadri S, Rao SN, Samarasinghe C, Kumar A, Valsalan R. A case of organophosphate poisoning presenting with ‎seizure and unavailable history of parenteral suicide attempt. Journal of Emergencies, Trauma and Shock. 2011; 4(1):132-4. ‎‎[DOI:10.4103/0974-2700.76825] [PMID] [PMCID]‎

‎7.‎ Soltaninejad K, Faryadi M, Sardari F. Acute pesticide poisoning related deaths in Tehran during the period 2003-2004. Journal of ‎Forensic and Legal Medicine. 2007; 14(6):352-4. [DOI:10.1016/j.jflm.2006.12.011] [PMID]‎

‎8.‎ Karimani A, Mamashkhani Y, Moghadam Jafari A, Akbarabadi M, Heidarpour M. Captopril attenuates diazinon-induced ‎oxidative stress: A subchronic study in rats. Iranian Journal of Medical Sciences. 2018; 43(5):514-22. ‎

‎9.‎ United States Environmental Protection Agency. Diazinon: Phase out of all residential uses of the insecticide. Washington: United ‎States Environmental Protection Agency; 2012. ‎

‎10.‎ Park MJ, In SW, Lee SK, Choi WK, Park YS, Chung HS. Postmortem blood concentrations of organophosphorus pesticides. Forensic ‎Science International. 2009; 184(1-3):28-31. [DOI:10.1016/j.forsciint.2008.11.008] [PMID]‎

‎11.‎ Abu-Qare AW, Abou-Donia MB. Determination of diazinon, chlorpyrifos, and their metabolites in rat plasma and urine by high-‎performance liquid chromatography. Journal of Chromatographic Science. 2001; 39(5):200-4. [DOI:10.1093/chromsci/39.5.200] ‎‎[PMID]‎

‎12.‎ Cho Y, Matsuoka N, Kamiya A. Determination of organophosphorous pesticides in biological samples of acute poisoning by HPLC ‎with diode-array detector. Chemical and Pharmaceutical Bulletin. 1997; 45(4):737-40. [DOI:10.1248/cpb.45.737] [PMID]‎

‎13.‎ Kim HS, Kim J, Suh JH, Han SB. General unknown screening for pesticides in whole blood and Korean gastric contents by liquid ‎chromatography-tandem mass spectrometry. Archives of Pharmacal Research. 2014; 37(10):1317-24 [DOI:10.1007/s12272-014-‎‎0440-3] [PMID]‎

‎14.‎ Sarafraz-Yazdi A, Amiri A. Liquid-phase microextraction. Trends in Analytical Chemistry. 2010; 29(1):1-14. ‎‎[DOI:10.1016/j.trac.2009.10.003]‎

‎15.‎ Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S. Determination of organic compounds in water using ‎dispersive liquid-liquid microextraction. Journal of Chromatography A. 2006; 1116(1):1-9. [DOI:10.1016/j.chroma.2006.03.007] ‎‎[PMID]‎

‎16.‎ Al-Saidi HM, Emara AAA. The recent developments in dispersive liquid-liquid microextraction for preconcentration and ‎determination of inorganic analytes. Journal of Saudi Chemical Society. 2014; 18(6):745-61. [DOI:10.1016/j.jscs.2011.11.005]‎

‎17.‎ Leong MI, Fuh MR, Huang SD. Beyond dispersive liquid–liquid microextraction. Journal of Chromatography A. 2014; 1335:2-14. ‎‎[DOI:10.1016/j.chroma.2014.02.021] [PMID]‎

‎18.‎ Habibi H, Mohammadi A, Kamankesh M. Application and optimization of dispersive liquid-liquid microextraction coupled with ‎high-performance liquid chromatography for sensitive determination of furfural and hydroxymethyl furfural in jarred and canned ‎baby-foods. Nutrition and Food Sciences Research. 2017; 4(1):25-32. [DOI:10.18869/acadpub.nfsr.4.1.25]‎

‎19.‎ Bro R. Multivariate calibration: What is in chemometrics for the analytical chemist? Analytica Chimica Acta. 2003; 500(1-2):185-94. ‎‎[DOI:10.1016/S0003-2670(03)00681-0]‎

‎20.‎ Singh G, Pai RS. Optimization (central composite design) and validation of HPLC method for investigation of emtricitabine loaded ‎poly (lactic-co-glycolic acid) nanoparticles: In vitro drug release and in vivo pharmacokinetic studies. The Scientific World Journal. ‎‎2014; 2014:583090. [DOI:10.1155/2014/583090] [PMID] [PMCID]‎

‎21.‎ Shah VP, Midha KK, Findlay JW, Hill HM, Hulse JD, McGilveray IJ, et al. Bioanalytical method validation-a revisit with a decade of ‎progress. Pharmaceutical Research. 2000; 17(12):1551-7. [DOI:10.1023/A:1007669411738] [PMID]‎

‎22.‎ Santos C, Oppolzer D, Gonçalves A, Barroso M, Gallardo E. Determination of organophosphorous pesticides in blood using ‎microextraction in packed sorbent and gas chromatography-tandem mass spectrometry. Journal of Analytical Toxicology. 2018; ‎‎42(5):321-29. [DOI:10.1093/jat/bky004] [PMID]‎

‎23.‎ Soares S, Castro T, Rosado T, Fernández N, Barroso M, Gallardo E. New analytical approach to determine organophosphorus ‎insecticides inblood by dried matrix spots sampling and GC-MS/MS. Analytical and Bioanalytical Chemistry. 2018; 410(30):7955-‎‎64. [DOI:10.1007/s00216-018-1417-8] [PMID]‎




DOI: https://doi.org/10.32598/ijmtfm.v9i4.26167