Treatment of Mitochondrial Cytopathies

How to Cite This Article: Shakiba M. Treatment of Mitochondrial Cytopathies. Iran J Child Neurol Autumn 2013; 7:4(suppl. 1):16-17.

Mitochondrial cytopathies are clinically and biochemically heterogeneous disorders affecting energy production. Because of the heterogeneity of disorders, the large number of biochemical and genetic defects, and wide spectrum of clinical course, there are limited data about proven effective therapies. Overall, treatments for mitochondrial cytopathies are intended to augment energy production and reduce the production of free radicals and other toxic metabolites that further limit the generation of cellular energy. Treatment can be aimed at increasing respiratory chain activity by supplementing relative deficiencies of cofactors required for proper functioning. Possible strategies to consider may include dietary management, supplemental vitamins and cofactors, and specific medications aimed at a particular symptom.

The other B vitamins have been used, with reports of effectiveness in small numbers of patients, likely those with a rare but specific vitamin-responsive syndrome. Treatment with Dichloroacetate associate with some degree of improvement in several studies. Its primary site of action is the pyruvate dehydrogenase (PDH) complex, which it stimulates by altering its phosphorylation state and stability.

In critical situations, when lactic acid and ammonia levels are extremely elevated, the use of continuous infusion insulin (0.05-0.1 U/kg/h), using very frequent glucose monitoring, may help reverse catabolism, decrease circulating toxic free fatty acids, and lower lactic acid and ammonia levels. The use of sodium benzoate, phenylbutyrate, and sodium phenylacetate can bind conjugate ammonia in the case of severe hyperammonemia. Enteral use of lactulose also can help lower ammonia levels.

Dietary management for mitochondrial disorders remains largely trial and error. A low-carbohydrate, high fat diet is helpful for some patients with complex I deficiency but others do better on a high-carbohydrate, low-fat diet. Patients

Marjan SHAKIBA MD

Pediatric Endocrinology and Metabolism Department, Mofid Children Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran Corresponding Author: Shakiba M. MD Mofid Children Hospital, Shariati Ave, Tehran, Iran Tel: +98 21 22227021 Email: shakibamarjan@yahoo.com with PDH deficiency should be treated with a ketogenic diet.

The use of frequent, small-volume feedings is generally well tolerated. For children with primary and secondary gluconeogenetic defects, avoidance of fasting is recommended.

Keywords: Children; Mitochondrial cytopathies; treatment