Abstract:

Objective

Mitochondrial DNA (mtDNA) is considered a candidate modifier factor for neuro-degenerative disorders. The most common type of ataxia is Friedreich’s ataxia (FA). The aim of this study was to investigate different parts of mtDNA in 20 Iranian FA patients and 80 age-matched controls by polymerase chain reaction (PCR) and automated DNA sequencing methods to find any probable point mutations involved in the pathogenesis of FA.

Materials and Methods

Results

Twelve of 13 nucleotide substitutions had already been reported as polymorphism. One of the nucleotide substitutions (A9024G) had not been reported before. The A9024G nucleotide substitution does not change its amino acid. The controls were also investigated for this polymorphism which was found in two of them (2.5%).

Conclusion

None of the mutations found in this study can affect the clinical manifestations of FA. This survey also provides evidence that the mtDNA A9024G allele is a new nonpathogenic polymorphism. We suggest follow-up studies for this polymorphism in different populations.

Keywords: Mitochondrial DNA, Friedreich’s Ataxia

Introduction

Mitochondrial genome is exclusively maternally inherited, does exhibit high mutation and mutation fixation rates (1). Modifier genes are defined on the basis of their ability to modulate the clinical phenotype of individuals with monogenic and multigenic disease (2). Mitochondrial DNA (mtDNA) could be considered a candidate modifier factor for neurodegenerative disorders, since mitochondrial oxidative stress is thought to be involved in the pathogenesis of degenerative disorders (3,4). The mutation rate for mtDNA is 10 times higher than that of nuclear genomic DNA (2). Many mtDNA diseases present with neurological symptoms and signs, but the clinical features are often non-specific and diffuse, and mitochondrial diseases have frequently been misdiagnosed when only
clinical abnormalities are considered (5). Friedreich ataxia (FA, OMIM# 229300) is an autosomal recessive ataxia resulting from a mutation of a gene locus on Chromosome 9q13-q21.1 (6). Clinical diagnostic criteria for typical cases basically are Progressive limb and gait ataxia develops before the age of 30 years (7,8). Lower extremity tendon reflexes are absent and evidence of axonal sensory neuropathy is noted (7-9). Dysarthria, areflexia, motor weakness of the lower extremities, extensor plantar responses, and distal loss of joint position and vibration senses are not found in all patients within the first 5 years, but are eventually universal. Foot deformity, scoliosis, diabetes mellitus, and cardiac involvement are other common characteristics. Clinical evidence of ventricular hypertrophy, systolic ejection murmurs, and third or fourth heart sounds may be noted (9-11). Detected in about 96% of FA patients an expanded GAA trinucleotide repeat in intron 1 of the gene X25 that encodes a 210 amino acid protein, Frataxin, which is a nuclear-encoded protein located within mitochondrial inner membrane and crests (12). Frataxin is a component of the human Fe/S cluster (ISC) assembly machinery and it plays role in the maturation of both mitochondrial and cytosolic Fe/S proteins and also in heme biosynthesis (2,13). Recently, it has been shown that frataxin interacts with mitochondrial electron transport chain proteins (2,14). Excess iron in mitochondria of FA patients can cause mitochondrial dysfunction through irreversible oxidative damage. Iron is well-known as catalyst of free radicals (2). Patients with FA have a lower rate of mitochondrial ATP production (15). Following the symptoms, failure in ATP production and presence of radicals in mitochondria of patients with FA was the reason for us to investigate MT-ATP8 (ATP synthase subunit F0 8), MT-ATP6 (ATP synthase subunit F0 6), and highly mutative genes like; MT-LTI (tRNAleucine(UUA/G)), MT-ND1 (NADH Dehydrogenase subunit 1), MT-COII (Cytochrome coxidase subunit II), MT-TK (tRNAlysine), in 20 Iranian FA patients (7 female and 13 male) from 18 unrelated families, by PCR and automated DNA sequencing to find any probable point mutation that can be involved as an adjunct in the pathogenesis of FA.

Materials and Methods

20 patients were chosen randomly who had clinically and genetically diagnosed to have FA according to the criteria of Harding (16) and Geffroy et al. (17). All individuals included in this study were informed on the aims of the study and gave their informed consents to the genetic analysis. We performed mutations screening of MT-LTI, MT-ND1, MT-COII, MT-TK, MT-ATP8 and MT-ATP6. Peripheral blood samples were obtained and DNA was purified after lyses of white blood cells by use of DNA extraction kit. (Diatom DNA Extraction Kit, Genefanavaran, Tehran). PCR amplification was carried out in a final volume of 50 µl containing 200-300 ng total DNA, 10 pmol each primers, 2.5 mM MgCl2, 200 µM of each dNTP, 5µl of 10X PCR buffer and 2 Units Taq DNA polymerase. (Roche Applied Science) Two sets of primer used are as follows; Primer ONPF25(8161-8180 nt) 5' -CTA CGG TCA ATG CTC TGA AA -3',ONPR185 (9239-9219 nt) 5'- TAC TAT ATG ATA GGC ATG TGA - 3',These primers amplified a 1078 bp sequence encompassing of MT-COII, MT-NC7, MT-TK(tRNAlys), MT-ATP8 and MT-ATP6. Another pair of primers is ; ONPF82 (3187-3206 nt) 5'- CTC AAC TTA GTA TTA TAC CC-3', ONPR164(3550-3530nt) 5' -GAT GGT GAG AGC TAA GGT CG -3' were used to amplify a 363 bp sequence of MT-TL1(tRNAleu(UUA/G). The PCR reactions for amplification of first fragment were performed in a thermal cycler (MWG-Biotech Primus, Germany) for 35 cycles with denaturation at 94°C for 1´ (min), primer annealing at 55°C for 1´ (min) and primer extension at 72°C for 1´ (min). The amplified fragments were separated by gel electrophoresis in 1.5% agarose and for TL1 fragment were performed for 35 cycles with denaturation at 94°C for 1´ (min), primer annealing at 55°C for 1´ (min) and primer extension at 72°C for 1´ (min). The amplified fragments were separated by gel electrophoresis in 1.5% agarose. The amplified fragments were directly determined by automated sequencing 3700 ABI machine, using primer ONPF25, ONPF82 (Macrogen Seoul, Korea). The obtained mtDNA sequences were aligned with a multiple sequence alignment interface CLUSTAL_X with comparison to revised Cambridge
Results
We have identified 13 different point mutations in 40% of our FA patients (15% female, 25% male) on; MT-LTI tRNALeu(UUA/G), MT-NDI, MT-COII, MT-TK (tRNALys), MT-ATP8 and MT-ATP6 comparing with human mitochondrial DNA rCRS. Out of this 13 different point mutations: 57.14% of them were observed on MT-ATP6, 21.42% of them were found on MT-NDI, 7.14% of them were occurred on MT-COII and, 14% of them were noted on MT-ATP8. One of the mentioned point mutations (table 1) (18-30) were same in two different patients, G 8251 A and A9024G has been reported for the first time.

Discussion
Iron accumulation in the mitochondria of patients with FA would result in hypersensitivity to oxidative stress as a consequence of fenton reaction (Fe²⁺ production of hydroxyl radicals), as reactive oxygen species (ROS) are continuously generated by the respiratory chain, they may have cause significant oxidative damage to mtDNA (mtDNA deletions and mutations) if not efficiently eliminated(2). Considering the symptoms of FA including progressive gait and limb ataxia, dysarthria, nystagmus, hypertrophic cardiomyopathy (7,10), FA patients have also a lower rate of ATP production (14). We expected to find point mutations related to pathogenesis of FA in MT-ATP8, MT-ATP6, and highly mutative genes like; MT-LTI, MT-NDI, MT-COII and MT-TK. However 13 different mutations had been noted in 40% of the Iranian FA patients (table1), but our results showed that 12 point mutations out of 13 have been reported before as polymorphisms. Only A9024G mutation was found for the first time in this study. Interpretation of the mtDNA sequence data can be extremely difficult because mtDNA is highly polymorphic and it is often difficult and time consuming to establish whether a mutation is pathogenic or not, particularly if the base change has not been reported before. Of course, several canonical criteria suggest that a novel base change is pathogenic: 1) The base change must affect a site that has been conserved during evolution. 2) The mutation should be absent in normal controls. 3) The mutation must not be a known polymorphism (as described by one of the established sequence data bases). 4) The mutation should be reported in several pedigrees with similar phenotypes. 5) There must be a correlation between the levels of mutated mtDNA and severity of symptoms. 6) Deleterious mutations are usually (but not exclusively) heteroplasmic. This implies that the mutation occurred recently and did not have time to “fix” in the female line, or that there was selection against fixation acting at the level of the organism. 7) There is a correlation between the levels of mutated mtDNA and the occurrence of respiratory chain deficiency in individual muscle fiber segments or in cybrid cell lines. 8) Analysis of cybrid cell lines demonstrates that the mtDNA mutation alone is sufficient to cause a respiratory chain deficiency. These stringent criteria depend upon a good knowledge of the polymorphic sites in the background population. Thus, known polymorphic sites could be useful. In the present investigation, two criteria were applied to determine whether A9024G is pathogenic or not. The mutation was present in 2.5% of normal controls with the same ethnic origin and, according to established sequence data bases; the new base change was not a previously known polymorphism. Our data suggest that A9024G is a nonpathogenic polymorphism in the Iranian population. To confirm whether this substitution is a polymorphism or a mutation, follow-up studies are needed using other criteria applied to different populations.

Acknowledgment
We would like to thank all patients and their families whose collaboration and understanding allowed us to do this work, as well as their permission to publish it.
Table 1: mtDNA point mutations found in Iranian FA patients

<table>
<thead>
<tr>
<th>Number</th>
<th>Nucleotide position</th>
<th>Locus</th>
<th>Amino acid change</th>
<th>Report</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A3505G</td>
<td>MT-NCI</td>
<td>T-A</td>
<td>Yes</td>
<td>(18)</td>
</tr>
<tr>
<td>2</td>
<td>T3335C</td>
<td>MT-NDI</td>
<td>I-T</td>
<td>Yes</td>
<td>(19,20)</td>
</tr>
<tr>
<td>3</td>
<td>G3421A</td>
<td>MT-NDI</td>
<td>V-I</td>
<td>Yes</td>
<td>(18)</td>
</tr>
<tr>
<td>4</td>
<td>G8251A</td>
<td>MT-CO2</td>
<td>A-T</td>
<td>Yes</td>
<td>Unpublished(20)</td>
</tr>
<tr>
<td>5</td>
<td>A8563G</td>
<td>MT-ATP6</td>
<td>Syn</td>
<td>Yes</td>
<td>(21)</td>
</tr>
<tr>
<td>6</td>
<td>A8563G</td>
<td>MT-ATP8</td>
<td>Syn</td>
<td>Yes</td>
<td>(21)</td>
</tr>
<tr>
<td>7</td>
<td>G8584A</td>
<td>MT-ATP6</td>
<td>A-T</td>
<td>Yes</td>
<td>(22,23,24)</td>
</tr>
<tr>
<td>8</td>
<td>T8598C</td>
<td>MT-ATP6</td>
<td>Syn</td>
<td>Yes</td>
<td>Unpublished</td>
</tr>
<tr>
<td>9</td>
<td>T8614C</td>
<td>MT-ATP6</td>
<td>Syn</td>
<td>Yes</td>
<td>(25)</td>
</tr>
<tr>
<td>10</td>
<td>C8684T</td>
<td>MT-ATP6</td>
<td>T-I</td>
<td>Yes</td>
<td>Unpublished</td>
</tr>
<tr>
<td>11</td>
<td>A8701G</td>
<td>MT-ATP6</td>
<td>T-A</td>
<td>Yes</td>
<td>(26,27,28)</td>
</tr>
<tr>
<td>12</td>
<td>G8994A</td>
<td>MT-ATP6</td>
<td>Syn</td>
<td>Yes</td>
<td>(29,30)</td>
</tr>
<tr>
<td>13</td>
<td>A9024G</td>
<td>MT-ATP6</td>
<td>Syn</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

References
11. Babcock M, de Silva D, Oaks R, Davis-Kaplan S,

