Sensory processing in children with attention deficit hyperactivity disorder and high-functioning autism

Faezeh Dehghan*1, Navid Mirzakhany2, Mehdi AlizadeZarei3, Mehrnosh Sartipizade4

(Received: 22Dec 2013; Revised: 20Jan2014; Accepted: 28May 2014)

Abstract

Introduction: We aimed to assess the status of sensory processing in children with attention deficit and hyperactivity disorder, high-functioning autism and typical peers.

Methods: Participants in this study are children 7 to 10 years old with attention deficit hyperactivity disorder (n = 30), autistic children with high cognitive function (n = 28) and 30 matched typical children. Parents of children in all the groups have completed the Dunn sensory profile questionnaire (SP).

Results: The results of the present study showed that children in high-functioning autism and normal sensory processes act different. The autistic children differ in sensory seeking, emotional reactivity, low muscle tone and endurance, oral sensory sensitive, inattention and distractibility, poor sensory registration, sensory sensitivity, fine movement/perception. Children with attention deficit and hyperactivity disorder differ in seven factors of the nine factors. These factors were sensory seeking, emotional reactivity, low muscle tone and endurance, inattention and distractibility, poor sensory registration, sensory sensitivity, fine movement/perception.

Conclusion: Different sensory processing function in these children may explain their abnormal behaviors. This sensory processing dysfunction affects on child's daily life in areas such as play, academic skills, peer relationships, and self-help activities. Therapists should consider the child's sensory processing functions when they set therapeutic planes.

Declaration of Interest: None.

Keywords: Attention deficit hyperactivity disorder, Autism high function, Sensory processing.

Introduction

Attention deficit hyperactivity disorder (ADHD) is characterized by and developmentally inappropriate hyperactivity, inattention, and impulsivity, which can cause varying degrees of difficulty in daily functioning. (1) Prevalence of ADHD is between 3 to 6 percent of the school-aged children (2). ADHD is a risk factor in academic performance, psychological adjustment, and mental illness in the future (3). Autistic disorder (Autism) is a developmental disorder, characterized by difficulties in social interaction and communication and restricted and repetitive interests and behaviors (4). Although sensory symptoms are not part of the diagnostic criteria, but most autistic children show this symptoms (5).

1. Occupational therapy Department, shahidbeheshti university of medical science.
2. Occupational therapy Department, shahidbeheshti university of medical science.
3. Cognitive neuro science, Occupational therapy Department, Iran University of medical science.
4. Master of clinical psychology

Corresponding Author: Faezeh Dehghan, Email: Faezeh.dehghan@gmail.
Sensory processing is defined as registration, modulation, integration and organizing sensory inputs (6). Sensory processing disorder is defining difficulties in regulation and organizing the variety and intensity of responses to sensory input for compliance with environmental requirements (7). Children, who have sensory processing disorder, show abnormal sensory responses, such as under or over responsively, to sensory stimuli (8). Sensory processing disorder in children with autistic disorder is in a range between 42-95% based on case studies have been reported (8,9). ADHD children compared to normal children show more abnormalities in the sensory modulation in both the physiological assessment and parents reporting (10). From the perspective of sensory processing, children with ADHD may not properly receive and process sensory information. Therefore, they have difficulties in creating adaptive responses in home or social settings (11). Neu (1997) suggested that more activity, less adaptive abilities and low sensory threshold in infancy is associated with higher rate of ADHD in later ages (12).

Empirical evidence and assumptions are highlighted with sensory processing and dysfunction among children with ADHD (13). Both sensory modulation disorder and ADHD include hyperactivity and impulsive behaviors and a high percentage of children with ADHD have sensory processing disorders (14). ADHD in children is reported too sensitive to sensory stimuli in infancy and can be easily dismayed by environmental changes (15). Further, children with ADHD behavioral show behavioral evidence of difficulties in sensory modulation response to sensory inputs and particularly show over responsivity compared to normal children (16). Another study of children with ADHD and their siblings’ show that children with ADHD, girls with ADHD show tactile defensiveness more than boys with ADHD, but ADHD boys didn’t show any significant difference compare with normal groups (17). Another study suggests that ADHD children show under responsively in auditory system (18). Yochman et al. (2004) suggested that ADHD children respond to sensory stimuli are significantly different from healthy children. These differences are evident in the six-factor of 9 sensory scale factor and emotional responses. Behavioral and sensory processing is sensory modulation based on 11of the 14 sections sensory profile questioner different from healthy children (19).

Several studies in response to sensory stimuli in the ASD population are done (20, 21, 9). This response include over responsivity, under responsivity, Sensory seeking. All seven sensory domains specially auditory, visual, tactile and proprioceptive may indicate dysfunctions. These abnormal sensory processing patterns recognized as sensory modulation disorder, which is related to arousal level. Studies used parental questioners; suggest that rate of sensory processing dysfunction in autistic children than other psychological disorders (8, 22). Baranek et al. (2005) observed 3 sensory processing patterns in autistic children. These patterns pare wise incompatible and often have a coincidence (23). Although ASD diagnostic criteria do not include sensory processing deficits, many articles have reported sensory processing abnormalities in children with ASD. Several research groups have reported sensory modulation problems, which include both under and over responsiveness to sensory stimuli in autistic children (23, 24, 25). Pfeiffer et al. (2005) reported a strong relationship between the tactile defensive and anxiety in children with Asperger (26).
Wouter et al. (2012) study on autism and their normal sibling showed that autistic children significantly differ in sensory seeking and sensory avoidance domains (27). A review of 14 research studies, which involves sensory processing signs in children with ASD showed sensory behaviors are common (28). Roger et al. (2005) reviewed 48 empirical and 27 rhetorical studies, and found that intensity frequency and topography of these abnormal sensory behaviors are different in different ASD samples. In addition, they have reported evidence that is insufficient for considering sensory behavior as differential diagnosis between autism and other developmental disabilities (29). Study of 281 autistic children (3-6 year old) suggest that 95% of autistic children show some degree of sensory processing dysfunction short form in sensory profile questioner (9).

Walting et al. (2001) compared sensory processing behavior in autistic children (3-6 year old) by using long form of sensory profile questioner. Result showed that these children are different in 8 factors. These factors included sensory seeking, emotional reactivity, low muscle tone and endurance, oral sensory, sensitive inattention and distractibility, poor sensory registration, sensory sensitivity, fine movement/perception (30).

New theories about autism express these sensory processing dysfunctions are the core symptoms of autism and have downstream effects on the development of conceptual system in people with autism (31). The first aim of the present study was evaluation of sensory processing function between high functioning autistic children and normal peers. Another objective of the present study was to answer the question whether the sensory characteristics of the two disorders were different.

**Methods**

Thirty children clinically diagnosed with an attention-deficit–hyperactivity disorder (ADHD) and 30 typically developing Twenty-eight children clinically diagnosed with ASDHF and 30 control children of similar ages, participated in this study. The age range in all groups was between 7 to 10 year old. Children with ADHD and ASDHF groups had not used any psychiatric medicines or occupational therapy services yet. A child and adolescent psychiatrists diagnosed all by considering DSM-IV-TR characteristics. All children’s parent completed long form of sensory profile questioner.

To determine cognitive functioning autistic children asan entry criteria (overall IQ score of 90) from the Wechsler intelligence test was used. The Wechsler intelligence scale for children (WISC), developed by David Wechsler, is an individually administered intelligence test for children between the ages of 6 and 16 inclusive that can be completed without reading or writing (33). The WISC takes 65–80 minutes to administer and generates an IQ score, which represents a child's general cognitive ability. Since, psychological tests are culturally dependent iodine be made on the basis of the prevailing culture. Wechsler Memory Scale (1371) in translation has been prepared on the population in the age group 9 (n =1007) with the liability of 85/0 is a normal issue (34).

Data collection included demographic questionnaire and sensory profile questionnaire. Sensory profile questionnaire that published in 1999 by Wayne Dunn, focuses on evaluation of the sensory profile of children aged 3 to 10 (Dunn, 1999). This questionnaire consists of 125 items. The questionnaire results can be classified in 9 factors:
Factor 1 (sensory seeking): the child shows a need to a variety of sensory stimuli. Based on questionnaire standard scoring, children whose scores are low on this factor need lots of different sensory stimuli.

Factor 2 (emotional reactivity): shows children's reactions to emotional-social issues. Based on questionnaire standard scoring, children whose scores are low on this factor, shows severe reaction on emotional issues like failure, fear and anxiety.

Factor 3 (low muscle tone and endurance): shows muscle endurance of the child on different activities. Based on questionnaire standard scoring, children whose scores are low on this factor, indicating that the child has little tolerance in everyday activities and gets tired easily.

Factor 4 (oral sensory sensitive): oral sensory processing in children's shows. Based on questionnaire standard scoring, children whose scores are low on this factor, indicating the child has a high sensitivity to the taste, smell and temperature of the food.

Factor 5 (inattention and distractibility): represents the focus of the child's daily activities. Based on questionnaire standard scoring, children whose scores are low on this factor, indicate that the child quickly loses its focus because of environmental factors and is not able to continue activities.

Factor 6 (poor sensory registration): child doesn't register sensory stimuli enough. Based on questionnaire standard scoring, children whose scores are low on this factor, indicating that the child does not understand sensory stimuli enough.

Factor 7 (sensory sensitivity): children register high sensory stimuli. Based on questionnaire standard scoring, children, whose scores are low on this factor, indicating that children record high intensity vestibular and proprioceptive sensory stimuli and show sever reaction on it.

Factor 8 (sedentary): indicates the preference of the child is the type of activity. Based on questionnaire standard scoring, children whose scores are low on this factor, indicating that the child prefers quiet and sitting activities.

Factor 9 (fine movement/perception): indicates the fine baby status. Based on questionnaire standard scoring, children whose scores are low on this factor, indicating poor eye and hand coordination for children.

The questionnaire filling and completion time by the childcare provider is 15 to 20 minutes and score time for specialist is 30 minutes. Cronbach's alpha coefficient for all of the parts is obtained between 47 to 91 (32).

Results

Test the hypothesis, given the number of variable sand data obtained from measurement to multivariate analysis of variance (MANOVA) was used. The first hypothesis: there is a difference of 9-factors between normal and ASDHF children (table 1). The second hypothesis: there is a difference of 9 factors between normal and ASDHF children (table 2). The third hypothesis: between children with autism and ADHD sensory, there is a difference in terms of factors 9 (table 3).

Conclusion

The first research question was whether the two ASDHF and ADHD have different sensory processing from normal children. As the results have shown, children with ADHD and ASDHF have different sensory processing from normal children. The results of this study showed that children in the ASDHF and normal group act different in sensory processing. These children were different at the components of sensory seeking, emotional reactivity, low muscle tone and endurance, oral sensory sensitivity, inattention...
Table 1. Summary of effects of test subjects

<table>
<thead>
<tr>
<th>Sources</th>
<th>Dependent variables</th>
<th>SS</th>
<th>Df</th>
<th>MS</th>
<th>F</th>
<th>Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROPS</td>
<td>Sensory seeking</td>
<td>910.597</td>
<td>1</td>
<td>910.597</td>
<td>13.197*</td>
<td>0.194</td>
</tr>
<tr>
<td></td>
<td>emotional reactivity</td>
<td>4828.937</td>
<td>1</td>
<td>4828.937</td>
<td>38.868**</td>
<td>0.414</td>
</tr>
<tr>
<td></td>
<td>low muscle tone and</td>
<td>749.039</td>
<td>1</td>
<td>749.039</td>
<td>12.107**</td>
<td>0.180</td>
</tr>
<tr>
<td></td>
<td>endurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>oral sensory sensitivity</td>
<td>667.431</td>
<td>1</td>
<td>667.431</td>
<td>9.816**</td>
<td>0.151</td>
</tr>
<tr>
<td></td>
<td>inattention and</td>
<td>668.632</td>
<td>1</td>
<td>668.632</td>
<td>32.027**</td>
<td>0.368</td>
</tr>
<tr>
<td></td>
<td>distractibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>poor sensory registration</td>
<td>197.183</td>
<td>1</td>
<td>197.183</td>
<td>8.684**</td>
<td>0.136</td>
</tr>
<tr>
<td>Sensory</td>
<td>Sensory sensitivity</td>
<td>57.475</td>
<td>1</td>
<td>57.475</td>
<td>3.900</td>
<td>0.066</td>
</tr>
<tr>
<td>Sensory</td>
<td>Sensory sensitivity</td>
<td>58.608</td>
<td>1</td>
<td>2.467</td>
<td>.043</td>
<td>0.043</td>
</tr>
<tr>
<td>Fine</td>
<td>Fine movement and</td>
<td>74.989</td>
<td>1</td>
<td>74.989</td>
<td>13.735**</td>
<td>0.200</td>
</tr>
<tr>
<td>movement</td>
<td>perception</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Chi Square across age and positioning

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>5.625*</td>
<td>1</td>
<td>.044</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>6.194</td>
<td>1</td>
<td>.044</td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td>4.0</td>
<td>4</td>
<td>.56</td>
</tr>
<tr>
<td>Linear-by-Linear</td>
<td>5.484*</td>
<td>1</td>
<td>.044</td>
</tr>
<tr>
<td>Association</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Summary of effects of test subjects

<table>
<thead>
<tr>
<th>Sources</th>
<th>Dependent variables</th>
<th>SS</th>
<th>Df</th>
<th>MS</th>
<th>F</th>
<th>Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROPS</td>
<td>Sensory seeking</td>
<td>1048.725</td>
<td>1</td>
<td>1048.725</td>
<td>7.977**</td>
<td>0.125</td>
</tr>
<tr>
<td></td>
<td>Emotional reactivity</td>
<td>43.274</td>
<td>1</td>
<td>43.274</td>
<td>0.224</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>Low muscle tone and</td>
<td>42.562</td>
<td>1</td>
<td>42.562</td>
<td>0.505</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>endurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral sensory sensitivity</td>
<td>17.524</td>
<td>1</td>
<td>17.524</td>
<td>0.185</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>Inattention and</td>
<td>61.147</td>
<td>1</td>
<td>61.147</td>
<td>1.853</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>distractibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poor sensory registration</td>
<td>19.472</td>
<td>1</td>
<td>19.472</td>
<td>0.590</td>
<td>0.136</td>
</tr>
<tr>
<td>Sensory</td>
<td>Sensory sensitivity</td>
<td>6.119</td>
<td>1</td>
<td>6.119</td>
<td>0.355</td>
<td>0.006</td>
</tr>
<tr>
<td>Sensory</td>
<td>Sensory sensitivity</td>
<td>33.524</td>
<td>1</td>
<td>33.524</td>
<td>1.368</td>
<td>0.024</td>
</tr>
<tr>
<td>Fine</td>
<td>Fine movement and</td>
<td>40.115</td>
<td>1</td>
<td>74.989</td>
<td>4.209*</td>
<td>0.070</td>
</tr>
<tr>
<td>movement</td>
<td>perception</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
and distractibility, poor sensory registration and fine motor sensory perceptions.

A similar pattern in other studies of children with autism is expressed (8,30,35). However, the results are inconsistent with studies of Ermerand Dunn (1998), which have reported the incidence of low sensation-seeking behavior in a small sample of children with autism (36).

ADHD children showed different functions in seven factors of SP questionnaire nine factors. These factors are emotional reactivity, low muscle tone and endurance, inattention and distractibility, poor sensory registration, sensory sensitivity and sedentary.

The results are consistent with the study of Yachmn et al. 2004. The sensory systems processed in, affect the child's ability to respond compliant. A child will not absorb every sense that is received passively. A child chose sensory stimulus that needs to achieve his purpose in that time and place. This is sensory integration and when this process is successful, the child can organize a successful and purposeful action on the environment that is called adapted response (37).

Based on the Dunn pattern if a child has impairment in sensory registration, he will need more intensive stimuli to participate and respond to it. Children who are in a low arousal state and have inadequate emotional records they do not capture changes in environment and so, accommodative response will not occur (38). These children require more sensory stimulation in certain sensory modalities such as proprioception and balance. For instance, in a deep sense, these children usually seek for active resistance to muscle stimulation, deep palpation, or joint push and pull. For example, hitting legs instead of walking, intentional failure, collision with objects or other people, or pushing big objects. They may do some serious throwing like throwing things tight. Some of these children do not understand the situation of their body organs except with severe proprioceptive stimuli. These behaviors may be interpreted as aggressive behavior. These children go up the high places, running and are stirring to receive stimuli equilibrium. These behaviors together interferes children sit to learn in school, playing with peers, self-care activities and may increase child's environmental failure (39).

ASDHF samples children showed oral sensory sensitivity. This means that these children are sensitive to food flavor and texture of foods (hardness and softness). This makes these children do not have a good diet and eat only a limited variety of foods (40).

However, what is important for clinical work correlate these findings with the daily challenges of these children. Weakness of sensory processing, causing a mismatch between environmental needs of the child and his inner emotional needs (41) and can cause weakness in the child's ability to work with others and engage in related activities in a sustainable basis.

The second research question was whether children with ADHD and ASDHF show different sensory performance in sensory profile questionnaire? The results show the performance of these two groups differs from each other in the sensory situation. The differences are significant in sensation seeking and fine components/perception.

ADHD children have lower performance in seeking sensory component (mean score 57.63) than ASDHF children (mean score 66.14) and level of sensation-seeking behaviors is higher in these children.

One of the characteristics of ADHD children is impulsivity. Impulsivity in ADHD often explained as incorrect executive functions (EFs). In general...
terms, impulsivity means act without thinking and inability for planning. In the literature impulsivity is a heterogeneous concept that is described with terms such as quick response, sensation seeking, risk seeking, freshness seeking, boldness, and errantry (42). Sensation-seeking behaviors in children with ADHD can be aggravated by impulsivity.

Fine movement/perception factor in Dunn questionnaire just has 3-question about matching puzzle and hand fine movement. Results show that children with ADHD (mean 9.80) have lower performance than the children of ASDHF (mean 11.64). Due to low number of queries of this component we cannot accurately judge the fine movement/perception and understanding of this group based on this questionnaire. The results of this study suggest that occupational therapists consider emotional needs of children in developing treatment protocols for children with ADHD and ASD. To inform families about their children's emotional state can provide a better understanding of why children behave like this. Adapting and modifying the child's living environment by taking the functional status of the child can lead to better performance. Obviously, the outcome of the status of children’s behavior, sensory processing, cognitive skills, psychological factors, parenting styles, and other factors are effective. Therefore, therapists must be detailed and comprehensive compilation of various therapeutic approaches such as sensory integration, perceptual-motor activities, behavioral therapy and etc. to be used.

References


9. Tomchek SD, & Dunn W. Sensory processing in children with and without autism: A comparative study using the Short Sensory


Comparison of sensory processing in children with


