A comparative study of two different methods for determining the root canal working length

Saeed Moradi¹ DDS, MS, Maryam Javidi¹ DDS, MS, Roozbeh Rashed² DDS, Lella Raziee³ DDS
1. Assistant Professor of Endodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
2. Junior Trainee in the Department of Orthodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
3. Junior Trainee in the Department of Pediatric Dentistry, School of Dentistry Mashhad University of Medical Sciences Mashhad, Iran

Abstract

Introduction Success in endodontic treatment depends on various factors. Among the most important factors, appropriate preparation of the root canal system and keeping periapical region intact as much as possible could be mentioned. These are achieved by determining the penetration depth of the instruments into the canal i.e. the working length. Several methods are introduced for working length determination. The most popular techniques in this regard are the use of conventional radiography and electronic apex locators. A new type of apex locator is the Root ZX. The purpose of this study was to compare the accuracy rate of Root ZX apex locator with the conventional radiography.

Materials and Methods The working length of thirty extracted single rooted teeth were determined by means of Root ZX and conventional radiography then compared with the actual working lengths measured by the stereomicroscope.

Results The results showed there was statistically significant difference between the length determined by the Root ZX and stereomicroscope. In addition, the radiographic and stereomicroscopic working lengths had statistically significant differences as well. There was also significant difference between the lengths measured by the Root ZX and radiography.

Conclusion It is recommended to use the Root ZX and radiography both together to reach the most accurate working length.

Key words: Apex locator, Conventional radiography, Root ZX, Working length.

Received August 2005; accepted December 2005
* Correspondence: Dr M Javidi, Department of Endodontics, Faculty of Dentistry, Mashhad University, Mashhad, Iran. E-mail: m-javidi-endo@yahoo.co

Introduction

Many factors influence the success of root canal treatment. Among these factors an accurate and complete cleaning of the root canal system without disturbing the periapical integrity is of great importance (1). To reach this goal, the accurate working length of the root canal should be determined and the cleaning and shaping of the root canal system should be exactly performed up to this length. In other words, if the root canal treatment is done beyond the root canal working length or at a shorter length, the failure rate will be increased significantly. Thus, accurate determination of the root canal working length is one of the most important steps in endodontic therapy (1-3).

In order to determine the working length, many different methods and equipments have been introduced; from operator's tactile sense to complex devices such as electronic apex locators and radiography.

In this Study, the accuracy of the Root ZX apex locator and conventional radiography in determining the root canal working length are compared with each other to conclude whether the
Root ZX (considering its advantages) is an accurate alternative for conventional radiography or not (4-5).

Materials & Methods
Thirty extracted single-rooted teeth of any type were randomly selected. The teeth were completely caries-free and their roots had completely formed. In order to omit the tissue remnants, the teeth were kept in 5% sodium hypochlorite solution for one week. Access cavities were prepared on each tooth using a high-speed handpiece and a diamond bur.

In order to preparing the teeth for measuring the working length by the Root ZX apex locator, the root of each tooth was inserted into a little empty bottle through its flexible plastic cap. Next to the tooth, a metal rod was also inserted to be attached with the lip chip of the Root ZX. In order to complete the electrical circuit, each bottle was filled up with a buffer solution which worked as an electrolyte. It contained 7gr of NaCl, 4.5gr of Na$_2$HPO$_4$ and 6.67gr of KH$_2$PO$_4$ in one liter of distilled water.

Following the Root ZX manufacturer’s instructions, the working length of each tooth was measured and recorded.

On the other hand to preparing the teeth for measuring the working length by conventional radiography, the root of each tooth was put in an acrylic block and appropriate file at the working length determined by the Root ZX was inserted into each root canal. Then, radiography was taken by setting the radiographic tube perpendicular to the buccal surface of each blocked tooth. After standard film processing, each radiograph was investigated by two endodontists. If the file tip was in 0.5mm distance from radiographic apex, the radiographic working length was equal to the working length measured by the Root ZX. If not, necessary corrections were done to determine the radiographic working length.

To prepare the teeth for measuring the working length by the microscope, each tooth was put under the SZH 10 stereomicroscope (Olympus, 50X Japan). While looking at the apex, the file was pushed through the root canal. As soon as the file tip reached the apical foramen, the file was removed from the canal and its length was measured. According to Kuttler’s study, 0.5mm was subtracted from this length and the new length was considered as the actual working length for each tooth. Paired t test was used for data analysis.

Results
The findings of this study are summarized in table 1 and graphs 1-2.

Graph 1: Linear relation between Root ZX and stereomicroscopic working lengths

Graph 2: Linear relation between radiographic and stereomicroscopic working lengths

The difference between the measured working lengths by the Root ZX and by the stereomicroscope (actual working length) was statistically significant (P<0.05).

There was statistically significant difference between the working lengths measured by
conventional radiography and by the stereomicroscope (actual working length) (P<0.05).
The working lengths determined by the Root ZX and by conventional radiography were also com-
pared with each other. Statistically significant difference was found between these working
lengths, as well (P<0.05).
At the level of 5%, there are exists almost complete correlations between the Root ZX
working and the stereomicroscope working
lengths (R=0.990) using regression analysis and
considering the Root ZX working lengths (R) as
independent variables and the stereomicroscope
working length(s) as dependent variable(s), the
following linear relation can be described (graph
1): S= 0.04%0.47.
The radiographic working lengths (Ra) and the
stereomicroscopic working lengths (S) are also
correlated at the level of 5%. (R=0.989).
According to the regression analysis, the linear
relation between them is (graph 2): S=/.0/5 (Ra)
(Consider "Ra" as the independent variable and "S"
as the dependent variable).
At the level of 5%, there are exists almost complete
correlations between the Root ZX
working length(R) and the radiographic working
length (Ra) (R=0.983). Thus, the regression
analysis provide us this linear relation between
them (graph 3): Ra=/.008 (R) ("Ra" is the
dependent variable and "R" is the independent
variable).
The working lengths measured by the three
methods are also correlated to each other
(R=0.996). Considering the stereomicroscopic
working length(S) as the independent variable,
the following linear relation results from the
regression analysis: S=0.51 (Ra) +0.53 (R)-1.16.

In addition, the chi-square analysis (Fisher's
exact test), showed the following results:
Under stereomicroscopic investigation, it was
evident that in 17 teeth, the apical foramen
exactly opens at anatomic apex (apically). But in
the remaining 13 teeth, the opening of the apical
foramen is laterally to the anatomic apex.
According to fisher's exact test, by accepting the
clinical error of ±0.5 mm, the accuracy of the
working length determination by radiography
and by Root ZX, is not a function of apical
foramen opening in relation to the anatomic apex
(P>0.05).
Considering the clinical error of ±0.5mm, the
accuracy of Root ZX in determining root canal
working length is 56.7% and that of the
conventional radiography is 90% (Table 1-2).

![Graph 3: Linear relation between Root ZX and radiographic working lengths](image)

Discussion

Working length is a determined length of the
total root canal length at which all endodontic
procedures including cleaning, shaping and obturation are performed. Thus, the accurate
determination of this length is crucial to the success of root canal treatment. The distance
between a coronal reference point and a distinct
point on the apical end of the root (i.e. apical
constriction) is measured as the working length.
Two major methods for working length
determination are radiography and electronic
apex locators. In this study, the advantages,
disadvantages, accuracy and usefulness of the
Root ZX apex locator are compared with the
conventional radiography (5, 6).
The working lengths of 30 extracted single-
rooted teeth are determined by the Root ZX and
conventional radiography and then compared
with the actual working length of each tooth
measured by the stereomicroscope.
Compared to various methods used for working
with the Root ZX in vitro, in this study a new
and simple model is described. The ionic
solution is a buffer solution which is easily
mode, unlike the complex and expensive
electrolytes in other studies (almost all of them
consist of bactoagar or gelatin).
Observing the root canal end under the
stereomicroscope is a simple method which does
have some advantages: first, it is much less
expensive; second, it needs less complicated
equipment and last but not least, unlike using
other types of microscopes, there is no need for
keeping the teeth in acids to become soft and
then cut them; So the anatomic details of the
apical area remain intact.
In this study, we conclude that accepting the
clinical error of ±0.5mm. The Root ZX is able to
show the working length with the accuracy of
56.7%. In a similar study by Shabahang et al. (7)
in 1996, the accuracy of the Root ZX was
96.2%. However, that study was done on vital
teeth in vivo and the working length was not
measured but the position of the apical foramen
was determined. In addition, in Pagavino’s study
in 1998 (8), the accuracy of the Root ZX - with
the same clinical error - was 82.75%. Again the
teeth were vital and they used the scanning
electron microscope. However, in 1998 Dunlap
et al. (9) showed that there is no significant
difference between the accuracy of the Root ZX
in vital and nonvital teeth.
In 1999, Ibarrola et al. (10) claimed that canal
preflaring results in better performance of the
Root ZX, since the file reaches the apical
foramen much better. Thus, it is probable that
preflaring of the root canal has influence on the
accuracy of the Root ZX.
We also found that the accuracy of the Root ZX
is not a function of the position of the apical
foramen opening. However, Pagavino et al. in
1998, stated that the Root ZX is more accurate if
the apical foramen opens at the anatomic apex.
This difference could derive from the different
methods of these two studies as Pagavino used
the SEM.
In our study, the accuracy of the conventional
radiography (parallel method) was 90% (considering the clinical error of ±0.5mm). This
high rate of accuracy may be related to the fact
that the study was done in vitro. In clinic, there
are many limitations for taking a radiography
and consequently the accuracy of the
radiography reduces: Parallel method cannot be
used ideally, taking radiography in presence of
rubber dam is difficult, sometimes the anatomic
structures are superimposed on the radiograph
and occasionally the patient is not cooperative
(children, gag reflex).
To draw the final conclusion, both conventional
radiography and the Root ZX are useful. The
Root ZX can be used as an alternative in
pregnant women. Besides that, if anatomic
structures or the root position do not let us take
accurate radiographs, the Root ZX is highly
beneficial.
One can also estimate the working length by the
Root ZX before taking the radiograph.
In spite of these advantages, the Root ZX should
not be used as a single method for working
length determination. It could cause several
ersors. The file attached to the Root ZX can
center an accessory or lateral canal instead of the
main root canal. Only a radiograph can correct
this error. In addition, the Root ZX solely
measure the working length while a radiograph
gives us a vast range of information about the
shape and diameter of the root canal, anatomic
vicinities, bony lesions, etc. Thus, it is highly recommended that the conventional radiography and the Root ZX are used both together.

As there were strong correlations among methods of working length determination in our study, by considering linear relations between radio-graphic and/or Root ZX working length, stereomicroscope working length could be calculated.

For future studies, it is recommended that:

1. The Root ZX and radiography be compared in vivo.
2. Apical constriction is directly observed under SEM.
3. The RVG system is compared with the Root ZX and conventional radiography in order to find the best method for working length determination.

References