• Logo
  • SBMUJournals

Comparison of cytokine and gene activities in tissue and blood samples of patients with celiac disease

Ensieh Khalkhal, Zahra Razaghi, Hakimeh Zali, Ayad Bahadorimonfared, Majid Iranshahi, Mohammad Rostami-Nejad
37

Views

PDF

Abstract

Aim: The aim of this study is to explore the expression of genes associated to celiac disease (CD) in the target tissue and peripheral blood monocytes (PBMC) or serum to introduce possible potential biomarkers.

Background: Celiac disease (CD) is an autoimmune disease induced by gluten ingestion in genetically predisposed individuals. Despite technological progress, small intestine biopsy still is gold standard to diagnosis of CD.

Methods: CD data were collected from public databases (proteomics and microarray-based techniques documents). Differentially expressed genes (DEGs) in PBMC or serum and small intestinal biopsies from celiac patients compared to normal were collected and analyzed to introduce common individuals. Gene ontology was done to identify the involved biological terms.

Results: Among 598 CD genes in biopsies and 260 genes in PBMC or serum, 32 common genes with similar expression pattern in the both of source were identified. Numbers of 48 biological terms were introducing which were involved in the CD via the determined DEGs. “Cytokine activity” was the most expanded one of the biological terms.

Conclusion: In this analysis it was concluded that 32 potential biomarkers of CD can be assessed by complementary research to introduce effective and available biomarkers in biopsy and blood.

 


Keywords

Celiac disease, PBMs, gene expression, intestine biopsy

References

Green PH, Cellier CJNejom. Celiac disease. 2007;357(17):1731-43.

Izadi F, Tavirani MR, Honarkar Z, Rostami-Nejad MJG, bench hfbt. Celiac disease and hepatitis C relationships in transcriptional regulatory networks. 2017;10(4):303.

Pereyra L, Gonzalez R, Mohaidle A, Fischer C, Mella JM, Panigadi GN, et al. Risk of colorectal neoplasia in patients with celiac disease: a multicenter study. Journal of Crohn's & colitis. 2013;7(12):e672-7.

Hershko C, Hoffbrand AV, Keret D, Souroujon M, Maschler I, Monselise Y, et al. Role of autoimmune gastritis, Helicobacter pylori and celiac disease in refractory or unexplained iron deficiency anemia. 2005;90(5):585-95.

Farrell RJ, Kelly CPJNEJoM. Celiac sprue. 2002;346(3):180-8.

Ch'ng CL, Jones MK, Kingham JGC. Celiac disease and autoimmune thyroid disease. Clinical medicine & research. 2007;5(3):184-92.

Bibbò S, Pes GM, Usai-Satta P, Salis R, Soro S, Quarta Colosso BM, et al. Chronic autoimmune disorders are increased in coeliac disease: A case-control study. Medicine. 2017;96(47):e8562-e.

Assa A, Frenkel-Nir Y, Tzur D, Katz LH, Shamir R. Large population study shows that adolescents with celiac disease have an increased risk of multiple autoimmune and nonautoimmune comorbidities. Acta paediatrica (Oslo, Norway : 1992). 2017;106(6):967-72.

Bakhshipour A, Kaykhaei MA, Moulaei N, Mashhadi MA. Prevalence of coeliac disease in patients with non-alcoholic fatty liver disease. Arab journal of gastroenterology : the official publication of the Pan-Arab Association of Gastroenterology. 2013;14(3):113-5.

Zubarik R, Ganguly E, Nathan M, Vecchio J. Celiac disease detection in hypothyroid patients requiring elevated thyroid supplementation: A prospective cohort study. European journal of internal medicine. 2015;26(10):825-9.

Green PH, Rostami K, Marsh MNJBP, Gastroenterology RC. Diagnosis of coeliac disease. 2005;19(3):389-400.

Fasano A, Catassi CJG. Current approaches to diagnosis and treatment of celiac disease: an evolving spectrum. 2001;120(3):636-51.

Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. The EPMA journal. 2016;7:23.

Rhodes DR, Tomlins SA, Varambally S, Mahavisno V, Barrette T, Kalyana-Sundaram S, et al. Probabilistic model of the human protein-protein interaction network. 2005;23(8):951.

Gandhi T, Zhong J, Mathivanan S, Karthick L, Chandrika K, Mohan SS, et al. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. 2006;38(3):285.

Azodi MZ, Peyvandi H, Rostami-Nejad M, Safaei A, Rostami K, Vafaee R, et al. Protein-protein interaction network of celiac disease. 2016;9(4):268.

Zachariou M, Minadakis G, Oulas A, Afxenti S, Spyrou GM. Integrating multi-source information on a single network to detect disease-related clusters of molecular mechanisms. Journal of proteomics. 2018;188:15-29.

Galatola M, Auricchio R, Greco L. Gene Expression Profiling of Celiac Biopsies and Peripheral Blood Monocytes Using Taqman Assays. Celiac Disease: Springer; 2015. p. 105-15.

Frisullo G, Nociti V, Iorio R, Patanella AK, Plantone D, Bianco A, et al. T‐bet and pSTAT‐1 expression in PBMC from coeliac disease patients: new markers of disease activity. 2009;158(1):106-14.

Ciccocioppo R, Panelli S, Conti Bellocchi MC, Cangemi GC, Frulloni L, Capelli E, et al. The transcriptomic analysis of circulating immune cells in a celiac family unveils further insights into disease pathogenesis. 2018;5:182.

Galatola M, Cielo D, Panico C, Stellato P, Malamisura B, Carbone L, et al. Presymptomatic diagnosis of celiac disease in predisposed children: the role of gene expression profile. 2017;65(3):314-20.

Brynychova I, Hoffmanova I, Dvorak M, Dankova PJAic, University emooWM. Increased Expression of TLR4 and TLR7 but Not Prolactin mRNA by Peripheral Blood Monocytes in Active Celiac Disease. 2016;25(5):887-93.

Ghasiyari H, Rostami-Nejad M, Amani D, Rostami K, Pourhoseingholi MA, Asadzadeh-Aghdaei H, et al. Diverse Profiles of Toll-Like Receptors 2, 4, 7, and 9 mRNA in Peripheral Blood and Biopsy Specimens of Patients with Celiac Disease. 2018;2018.

Bragde H, Jansson U, Fredrikson M, Grodzinsky E, Söderman JJBg. Potential blood-based markers of celiac disease. 2014;14(1):176.

Broide E, Scapa E, Bloch O, Shapiro M, Kimchi N, Ben-Yehudah G, et al. Evidence for aberrant regulation of MAP kinase signal transduction pathway in peripheral blood mononuclear cells in patients with active celiac disease. 2009;54(6):1270-5.

Diosdado B, Wapenaar M, Franke L, Duran K, Goerres M, Hadithi Ma, et al. A microarray screen for novel candidate genes in coeliac disease pathogenesis. 2004;53(7):944-51.

Stulík J, Hernychová L, Porkertová S, Pozler O, Tučková L, Sánchez D, et al. Identification of new celiac disease autoantigens using proteomic analysis. 2003;3(6):951-6.

Simula MP, Cannizzaro R, Canzonieri V, Pavan A, Maiero S, Toffoli G, et al. PPAR signaling pathway and cancer-related proteins are involved in celiac disease-associated tissue damage. 2010;16(5-6):199-209.

Tavirani MR, Bashash D, Rostami FT, Tavirani SR, Nikzamir A, Tavirani MR, et al. Celiac disease microarray analysis based on system biology approach. 2018;11(3):216.

Bragde H, Jansson U, Fredrikson M, Grodzinsky E, Söderman JJC, sciences ml. Celiac disease biomarkers identified by transcriptome analysis of small intestinal biopsies. 2018;75(23):4385-401.

Bragde H, Jansson U, Jarlsfelt I, Söderman JJPr. Gene expression profiling of duodenal biopsies discriminates celiac disease mucosa from normal mucosa. 2011;69(6):530.

Sangineto M, Graziano G, D’Amore S, Salvia R, Palasciano G, Sabbà C, et al. Identification of peculiar gene expression profile in peripheral blood mononuclear cells (PBMC) of celiac patients on gluten free diet. 2018;13(5):e0197915.

Pascual V, Medrano L, López-Palacios N, Bodas A, Dema B, Fernández-Arquero M, et al. Different gene expression signatures in children and adults with celiac disease. 2016;11(2):e0146276.

Cielo D, Galatola M, Fernandez-Jimenez N, De Leo L, Garcia-Etxebarria K, Loganes C, et al. Combined Analysis of Methylation and Gene Expression Profiles in separate Compartments of small Bowel Mucosa Identified Celiac Disease patients’ signatures. 2019;9.

Galatola M, Izzo V, Cielo D, Morelli M, Gambino G, Zanzi D, et al. Gene expression profile of peripheral blood monocytes: a step towards the molecular diagnosis of celiac disease? 2013;8(9):e74747.

Fernandez-Jimenez N, Santin I, Irastorza I, Plaza-Izurieta L, Castellanos-Rubio A, Vitoria JC, et al. Upregulation of KIR3DL1 gene expression in intestinal mucosa in active celiac disease. 2011;72(8):617-20.

Castellanos-Rubio A, Caja S, Irastorza I, Fernandez-Jimenez N, Plaza-Izurieta L, Vitoria JC, et al. Angiogenesis-related gene expression analysis in celiac disease. 2012;45(3):264-70.

Salvati V, Bajaj-Elliott M, Poulsom R, Mazzarella G, Lundin K, Nilsen E, et al. Keratinocyte growth factor and coeliac disease. 2001;49(2):176-81.

Green P, Glickman RMJJolr. Intestinal lipoprotein metabolism. 1981;22(8):1153-73.

Vuoristo M, Kesäniemi Y, Gylling H, Miettinen TJM. Metabolism of cholesterol and apolipoprotein B in celiac disease. 1993;42(11):1386-91.

Niessen H, Lagrand W, Rensink H, Meijer CJ, Aarden L, Hack CJJocp. Apolipoprotein H, a new mediator in the inflammatory changes ensuing in jeopardised human myocardium. 2000;53(11):863-7.

Miyakis S, Giannakopoulos B, Krilis SAJTr. Beta 2 glycoprotein I-function in health and disease. 2004;114(5-6):335-46.

Sellar G, Keane J, Mehdi H, Peeples M, Browne N, Whitehead AJB, et al. Characterization and Acute-Phase Modulation of Canine Apolipoprotein H (β2-Glycoprotein 1). 1993;191(3):1288-93.

Ağar Ç, de Groot PG, Mörgelin M, Monk SD, van Os G, Levels JH, et al. β2-glycoprotein I: a novel component of innate immunity. 2011;117(25):6939-47.

Stefas I, Dubois G, Tigrett S, Lucarz E, Veas FJAppaen-sboh, diseases v. Apolipoprotein H, an acute phase protein, a performing tool for ultra-sensitive detection and isolation of microorganisms from different origins. 2011:21-42.

Kanai M, Raz A, Goodman DSJTJoci. Retinol-binding protein: the transport protein for vitamin A in human plasma. 1968;47(9):2025-44.

Rask L, Anundi H, Böhme J, Eriksson U, Fredriksson A, Nilsson S, et al. The retinol-binding protein. 1980;154:45-61.

McGough N, Cummings JHJPotNS. Coeliac disease: a diverse clinical syndrome caused by intolerance of wheat, barley and rye. 2005;64(4):434-50.

Petit MM, Meulemans SM, Van de Ven WJJJoBC. The focal adhesion and nuclear targeting capacity of the LIM-containing lipoma-preferred partner (LPP) protein. 2003;278(4):2157-68.

Trynka G, Zhernakova A, Romanos J, Franke L, Hunt K, Turner G, et al. Coeliac disease-associated risk variants in TNFAIP3 and REL implicate altered NF-κB signalling. 2009;58(8):1078-83.

Perkins NDJNrMcb. Integrating cell-signalling pathways with NF-κB and IKK function. 2007;8(1):49.

Gregersen PK, Amos CI, Lee AT, Lu Y, Remmers EF, Kastner DL, et al. REL, encoding a member of the NF-κB family of transcription factors, is a newly defined risk locus for rheumatoid arthritis. 2009;41(7):820.

Gilmore TD, Kalaitzidis D, Liang M-C, Starczynowski DTJO. The c-Rel transcription factor and B-cell proliferation: a deal with the devil. 2004;23(13):2275.

Kooloos WM, de Jong DJ, Huizinga TW, Guchelaar H-JJDdt. Potential role of pharmacogenetics in anti-TNF treatment of rheumatoid arthritis and Crohn's disease. 2007;12(3-4):125-31.

Plenge RM, Cotsapas C, Davies L, Price AL, De Bakker PI, Maller J, et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. 2007;39(12):1477.

Fung E, Smyth DJ, Howson JM, Cooper JD, Walker NM, Stevens H, et al. Analysis of 17 autoimmune disease-associated variants in type 1 diabetes identifies 6q23/TNFAIP3 as a susceptibility locus. 2009;10(2):188.

Graham RR, Cotsapas C, Davies L, Hackett R, Lessard CJ, Leon JM, et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. 2008;40(9):1059.

Wertz IE, O'rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. 2004;430(7000):694.

Coornaert B, Carpentier I, Beyaert RJJoBC. A20: central gatekeeper in inflammation and immunity. 2009;284(13):8217-21.

Verhelst K, Carpentier I, Kreike M, Meloni L, Verstrepen L, Kensche T, et al. A20 inhibits LUBAC‐mediated NF‐κB activation by binding linear polyubiquitin chains via its zinc finger 7. 2012;31(19):3845-55.

Kontakou M, Przemioslo R, Sturgess R, Limb A, Ciclitira PJSjog. Expression of tumour necrosis factor-α, interleukin-6, and interleukin-2 mRNA in the jejunum of patients with coeliac disease. 1995;30(5):456-63.

Romagnani S, Parronchi P, D’elios M, Romagnani P, Annunziato F, Piccinni M, et al. An update on human Th1 and Th2 cells. 1997;113(1-3):153-6.

Mizrachi A, Broide E, Buchs A, Kornberg A, Aharoni D, Bistritzer T, et al. Lack of correlation between disease activity and decreased stimulated secretion of IL-10 in lymphocytes from patients with celiac disease. 2002;37(8):924-30.

Fong SB. Characterisation of innate T cells in response to oral bacterial infection 2015.

Abadie V, Discepolo V, Jabri B, editors. Intraepithelial lymphocytes in celiac disease immunopathology. Seminars in immunopathology; 2012: Springer.

Takaki SJNRMeGkJjoci. Sh2b3/Lnk family adaptor proteins in the regulation of lymphohematopoiesis. 2008;31(6):440-7.

Pilz A, Willer E, Povey S, Abbott CJAohg. The genes coding for phosphoenolpyruvate carboxykinase‐1 (PCK1) and neuronal nicotinic acetylcholine receptor α4 subunit (CHRNA4) map to human chromosome 20, extending the known region of homology with mouse chromosome 2. 1992;56(4):289-93.

Hunt KA, Zhernakova A, Turner G, Heap GA, Franke L, Bruinenberg M, et al. Newly identified genetic risk variants for celiac disease related to the immune response. 2008;40(4):395.

Adamovic S, Amundsen S, Lie B, Gudjonsdottir A, Ascher H, Ek J, et al. Association study of IL2/IL21 and FcgRIIa: significant association with the IL2/IL21 region in Scandinavian coeliac disease families. 2008;9(4):364.

Van Heel DA, Franke L, Hunt KA, Gwilliam R, Zhernakova A, Inouye M, et al. A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. 2007;39(7):827.

Bouzid D, Fourati H, Amouri A, Marques I, Abida O, Tahri N, et al. Autoimmune diseases association study with the KIAA1109–IL2–IL21 region in a Tunisian population. 2014;41(11):7133-9.

Adams D, Hamilton TJRP, New York. Macrophages as destructive cells in host defence. Inflammation: Basic Principles and Clinical Correlates. JI Gallin, IM Goldstein, and R. Snyderman, editors. 1992;637:643.

Shi C, Pamer EGJNri. Monocyte recruitment during infection and inflammation. 2011;11(11):762.

Brown Z, Gerritsen ME, Carley WW, Strieter RM, Kunkel SL, Westwick JJTAjop. Chemokine gene expression and secretion by cytokine-activated human microvascular endothelial cells. Differential regulation of monocyte chemoattractant protein-1 and interleukin-8 in response to interferon-gamma. 1994;145(4):913.




DOI: https://doi.org/10.22037/ghfbb.v12i0.1813