• Logo
  • SBMUJournals

The critical role of dysregulation of antioxidant activity and carbohydrate metabolism in celiac disease

Ensieh KhalKhal, Mostafa Rezaei-Tavirani, Mohammad Reza Razzaghi, Sina Rezaei-Tavirani, Hakimeh Zali, Mohammad Rostami-Nejad
35

Views

PDF

Abstract

Aim: Identification of the important processes and the related genes that are dis-regulated in the celiac disease (CD) was the aim of this study.

Background: Celiac disease is an autoimmune disorder which is characterized by immune reaction response mostly to wheat gluten. The gluten-free diet is the best-known treatment of the patients.

Methods: Significant differentially expressed proteins (DEPs) related to the CD are extracted from a published proteomics study and are included in protein-protein interaction PPI) network analysis by Cytoscape software and its applications. The central proteins and related processes are identified and discussed.

Results: Among 53 queried genes, 51 individuals were recognized by the database, and after network construction, 48 ones included in the network, and three genes remained as isolated nodes. Following 50 neighbors, the network was analyzed, and eight central genes were identified as dis-regulated elements. Related processes and the role of the central genes in celiac are discussed in detail.

Conclusion: CAT, ENO1, PCK2, ACO2, ALDOOB, GALM, ADA, and ACTBADA as critical genes and Antioxidant activity, carbohydrate metabolism, inflammation, cell growth processes are highlighted as the dis-regulated individuals in CD.

Keywords: Celiac disease, Anti-oxidant, Metabolism, Inflammation, Cell growth.

(Please cite as KhalKhal E, Rezaei-Tavirani M, Akbari Z, Rezaei-Tavirani S, Zali H, Rostamii-Nejad M. The critical role of dysregulation of antioxidant activity and carbohydrate metabolism in celiac disease. Gastroenterol Hepatol Bed Bench 2019;12(4):340-347).


Keywords

Celiac disease, Anti-oxidant, Metabolism, Inflammation, Cell growth.

References

Green PH, Cellier C. Celiac disease. N Engl J Med 2007;357:1731-43.

Corrao G, Corazza GR, Bagnardi V, Brusco G, Ciacci C, Cottone M, et al. Club del Tenue Study Group. Mortality in patients with coeliac disease and their relatives: a cohort study. Lancet 2001;358:356-61.

Hershko C, Hoffbrand AV, Keret D, Souroujon M, Maschler I, Monselise Y, et al. Role of autoimmune gastritis, Helicobacter pylori and celiac disease in refractory or unexplained iron deficiency anemia. Haematologica 2005;90:585-95.

Farrell RJ, Kelly CP. Celiac sprue. N Engl J Med 2002;346:180-8.

Fasano A, Berti I, Gerarduzzi T, Not T, Colletti RB, Drago S, et al. Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study. Arch Int Med 2003;163:286-92.

Mäki M, Mustalahti K, Kokkonen J, Kulmala P, Haapalahti M, Karttunen T, et al. Prevalence of Celiac disease among children in Finland. N Engl J Med 2003;348:2517-24.

Lohi S, Mustalahti K, Kaukinen K, Laurila K, Collin P, Rissanen H, et al.Increasing prevalence of coeliac disease over time. Aliment Pharmacol Ther 2007;26:1217-25.

Mustalahti K, Catassi C, Reunanen A, Fabiani E, Heier M, McMillan S, et al.The prevalence of celiac disease in Europe: results of a centralized, international mass screening project. Ann Med 2010;42:587-95.

Green PH, Rostami K, Marsh MN. Diagnosis of coeliac disease. Best Pract Res Clin Gastroenterol 2005;19:389-400.

Fasano A, Catassi CJG. Current approaches to diagnosis and treatment of celiac disease: an evolving spectrum. Gastroenterology 2001;120:636-51.

Ladas SD, Tsamouri M, Kouvidou C, Raptis SA. Effect of forceps size and mode of orientation on endoscopic small bowel biopsy evaluation. Gastrointest Endosc 1994;40:51-5.

Rhodes DR, Tomlins SA, Varambally S, Mahavisno V, Barrette T, Kalyana-Sundaram S, et al. Probabilistic model of the human protein-protein interaction network. Nat Biotechnol 2005;23:951-9.

Gandhi T, Zhong J, Mathivanan S, Karthick L, Chandrika K, Mohan SS, et al. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 2006;38:285-93.

Azodi MZ, Peyvandi H, Rostami-Nejad M, Safaei A, Rostami K, Vafaee R, et al. Protein-protein interaction network of celiac disease. Gastroenterol Hepatol Bed Bench 2016;9:268-277.

Simula MP, Cannizzaro R, Canzonieri V, Pavan A, Maiero S, Toffoli G, et al. PPAR signaling pathway and cancer-related proteins are involved in celiac disease-associated tissue damage Mol Med 2010;16:199-209.

Rezaei-Tavirani M, Rezaei-Tavirani M, Azodi MZ. The bioinformatics aspects of gene screening of HT-29, human colon cell line treated with caffeic acid. Gastroenterol Hepatol Bed Bench 2019;12:246-53.

Rezaei-Tavirani S, Rostami-Nejad M, Montazar F. Highlighted role of VEGFA in follow up of celiac disease. Gastroenterol Hepatol Bed Bench 2019;12:254-259.

Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 2005;4:1265-72.

Jeong H, Mason SP, Barabási A-L, Oltvai ZN. Lethality and centrality in protein networks. Nature 2001;411:41.

Piatek-Guziewicz A, Ptak-Belowska A, Przybylska-Felus M, Pasko P, Zagrodzki P, Brzozowski T, et al. Intestinal parameters of oxidative imbalance in celiac adults with extraintestinal manifestations. World J Gastroenterol 2017;23:7849.

De Re V, Simula M, Notarpietro A, Canzonieri V, Cannizzaro R, Toffoli GJG. Do gliadin and tissue transglutaminase mediate PPAR downregulation in intestinal cells of patients with coeliac disease? Gut 2010;59:1730-1.

Barabasi AL, Oltvai ZNJNrg. Network biology: understanding the cell's functional organization. Nat Rev Genet 2004;5:101-13.

Luciani A, Villella VR, Vasaturo A, Giardino I, Pettoello-Mantovani M, Guido S, et al. Lysosomal accumulation of gliadin p31–43 peptide induces oxidative stress and tissue transglutaminase-mediated PPARγ downregulation in intestinal epithelial cells and coeliac mucosa. Gut 2010;59:311-9.

Bunger M, van den Bosch HM, van der Meijde J, Kersten S, Hooiveld GJ, Muller MJPg. Genome-wide analysis of PPARα activation in murine small intestine. Physiol Genomics 2007;30:192-204.

Diosdado B, Wapenaar M, Franke L, Duran K, Goerres M, Hadithi Ma, et al. A microarray screen for novel candidate genes in coeliac disease pathogenesis. Gut 2004;53:944-51.

Ciacci C, Gennarelli D, Esposito G, Tortora R, Salvatore F, Sacchetti LJCG, et al. Hereditary fructose intolerance and celiac disease: a novel genetic association. Clin Gastroenterol Hepatol 2006;4:635-8.

Robins G, Howdle PJCoig. Advances in celiac disease. Curr Opin Gastroenterol 2005;21:152-61.

Sellick CA, Campbell RN, Reece RJJIroc, biology m. Galactose metabolism in yeast—structure and regulation of the Leloir pathway enzymes and the genes encoding them. Int Rev Cell Mol Biol 2008;269:111-50.

Keston AS. Occurrence of mutarotase in animals: Its proposed relationship to transport and reabsorption of sugars and insulin. Science 1954;120:355-6.

Stetten D Jr, Welt ID, Ingle DJ, Morley EH. Rates of glucose production and oxidation in normal and diabetic rats. J Biol Chem 1951;192:817-30.

Bertini I, Calabro A, De Carli V, Luchinat C, Nepi S, Porfirio B, et al. The metabonomic signature of celiac disease. J Proteome Res 2008;8:170-7.

Peckham M, Miller G, Wells C, Zicha D, Dunn GAJJocs. Specific changes to the mechanism of cell locomotion induced by overexpression of (β)-actin. J Cell Sci 2001;114:1367-77.

Bunnell TM, Burbach BJ, Shimizu Y, Ervasti JM. β-Actin specifically controls cell growth, migration, and the G-actin pool. Mol Biol Cell 2011;22:4047-58.

Pollard TD, Cooper JA. Actin, a central player in cell shape and movement. Science 2009;326:1208-12.

Lionetti E, Catassi C. New clues in celiac disease epidemiology, pathogenesis, clinical manifestations, and treatment. Int Rev Immunol 2011;30:219-31.

.

Troncone R, Kosova RJ. Short stature and catch-up growth in celiac disease. Science 2010;51:S137-8.

Jorgensen P, Tyers MJCb. How cells coordinate growth and division. Curr Biol 2004;14:R1014-27.

Winick M, Noble AJ. Quantitative changes in DNA, RNA, and protein during prenatal and postnatal growth in the rat. Dev Biol 1965;12:451-66.

Losey HC, Ruthenburg AJ, Verdine GL. Crystal structure of Staphylococcus aureus tRNA adenosine deaminase TadA in complex with RNA. Nat Struct Mol Biol 2006;13:153-9.

Moriwaki Y, Yamamoto T, Higashino KJH, histopathology. Enzymes involved in purine metabolism-a review of histochemical localization and functional implications. Histol Histopathol 1999;14:1321-40.

Blackburn MR, Kellems RE. Adenosine deaminase deficiency: metabolic basis of immune deficiency and pulmonary inflammation. Adv Immunol 2005;86:1-41.

Apasov SG, Blackburn MR, Kellems RE, Smith PT, Sitkovsky MV. Adenosine deaminase deficiency increases thymic apoptosis and causes defective T cell receptor signaling. J Clin Invest 2001;108:131-41.

Haghbin M, Rostami-Nejad M, Forouzesh F, Sadeghi A, Rostami K, Aghamohammadi E, et al. The role of CXCR3 and its ligands CXCL10 and CXCL11 in the pathogenesis of celiac disease. Medicine 2019;98:e15949.

Przybylska-Feluś M, Piatek-Guziewicz A, Dynowski W, Zwolińska-Wcisło M, Rozpondek P, Mach T. Antibodies against alfa-enolase as an indication of inflammatory process in patients with celiac disease-preliminary results. Przegl Lek 2014;71:254-7.

Shao W, Yeretssian G, Doiron K, Hussain SN, Saleh MJ. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J Biol Chem 2007;282:36321-9.

Stulík J, Hernychová L, Porkertová S, Pozler O, Tucková L, Sánchez D, et al. Identification of new celiac disease autoantigens using proteomic analysis. Proteomics 2003;3:951-6.

Terrier B, Degand N, Guilpain P, Servettaz A, Guillevin L, Mouthon L. Alpha-enolase: a target of antibodies in infectious and autoimmune diseases. Autoimmun Rev 2007;6:176-82.

Perconti G, Ferro A, Amato F, Rubino P, Randazzo D, Wolff T, et al. The kelch protein NS1-BP interacts with alpha-enolase/MBP-1 and is involved in c-Myc gene transcriptional control. Biochim Biophys Acta 2007;1773:1774-85.

Mosca M, Chimenti D, Pratesi F, Baldini C, Anzilotti C, Bombardieri S, et al. Prevalence and clinico-serological correlations of anti-alpha-enolase, anti-C1q, and anti-dsDNA antibodies in patients with systemic lupus erythematosus. J Rheumatol 2006;33:695-7.

Anderson VE, Weiss PM, Cleland WJB. Reaction intermediate analogs for enolase. Biochemistry 1984;23:2779-86.

Pontillo A, Di Toro N, Edomi P, Shadlow A, Ammadeo A, Gattorno M, et al. Anti--enolase Antibodies in Serum from Pediatric Patients Affected by Inflammatory Diseases: Diagnostic and Pathogenetic Insights. Int J Rheumatol 2011;2011.




DOI: https://doi.org/10.22037/ghfbb.v12i4.1745