The efficacy and safety of adding the probiotic *Saccharomyces boulardii* to standard triple therapy for eradication of *H. pylori*: a randomized controlled trial

Homayoun Zojaji, Mehdi Ghobakhlou, Hassan Rajabalinia, Elnaz Ataei, Somayeh Jahani Sherafat, Bijan Moghimi-Dehkordi, Rasoul Bahreiny

Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

ABSTRACT

Aim: Evaluating the efficacy and safety of adding the probiotic *Saccharomyces boulardii* to standard triple therapy for eradication of *Helicobacter pylori*.

Background: Several probiotics such as *Saccharomyces boulardii* have been investigated for their clinical efficacy. This probiotic inhibit *H. pylori* urease by lowering the gastric pH, adhesion of *H. pylori* to gastric epithelial cells, stabilize the gastric barrier function and reduce the side effects of antibiotics.

Patients and methods: In this randomized controlled trial we evaluated 160 adult patients with biopsy confirmed *H. Pylori* infection referred to gastroenterology ward of Taleghani hospital. The patients were randomized into two treatment regimens: patients in group A (n=80) were given amoxicillin (1000 mg, b.i.d), clarithromycin (500 mg, b.i.d), omeprazole (20 mg, b.i.d) and probiotic of *saccaromyces boulariidi* (Yomogi) (250 mg, b.i.d) for 14 days. Moreover, patients in group B (n=80) were given amoxicillin (1000 mg, b.i.d), clarithromycin (500 mg b.i.d) and omeprazole (20 mg,b.i.d) for 14 days.

Results: 160 patients (66 male 41.25%, 94 female 58.75%) with the mean age of 47.1±11.4 years were evaluated. The success rate for *H. pylori* eradication in group A was higher 75(87.5%) than group B 65 (81.2%), but the difference between two groups was not significant (p=0.350). Moreover, in case group, side effects such as nausea, diarrhea, abdominal discomfort and bloating were significantly lower than control group in first and second weeks.

Conclusion: This study showed that *saccaromyces boulariidi* decreased the adverse effects associated with *H.pylori* therapy but did not significantly increase the eradication rate of *H.pylori*.

Keywords: *Helicobacter pylori*, Probiotic, *Saccharomyces boulardii*, Anti-*helicobacter pylori* eradication therapy.

Introduction

Helicobacter pylori (*H. pylori*) affects approximately 50% of the world’s population and it is a leading cause of peptic ulcers and chronic gastritis. Moreover, *H. pylori* was defined as a possible risk factor for gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma (1). The World Health Organization (WHO) classified it as a type 1 carcinogen in 1994 (2). Treatment with amoxicillin, clarithromycin and a proton pump inhibitor (PPI) is the first-line triple therapy to eradicate *H. Pylori*. However, due to high prevalence of treatment failure related to
Efficacy of probiotic in Helicobacter pylori eradication therapy

S100

antibiotic resistance, frequent and uncontrolled use of antibiotic and severe and frequent antibiotic adverse effects (3, 4) the clinicians have considered several alternatives therapies. These methods include: extended treatment duration, the use of new antibiotics, and quadruple therapy as the first option or recently the addition of probiotics to triple therapy (4-6). Probiotics are live microorganisms that may have a positive effect on gastrointestinal microorganism and recover health conditions (7). These agents have become progressively popular in the world to treat a diverse type of gastrointestinal disease (8-10). In this regard numerous probiotic strains have been investigated for their clinical efficacy, including multiple bacterial strains and fungal strains as Saccharomyces boulardii (9-13). The probiotics inhibit H. pylori urease by lowering the gastric pH, adhesion of H. pylori to gastric epithelial cells, stabilize the gastric barrier function (14) and reduce the side effects of antibiotics (15, 16). However, previous studies have provided conflicting information regarding the positive effect of probiotic on H. pylori eradication (17).

To our knowledge not enough evidence are available on the beneficial effects of adding probiotics into the eradication regimen of H. Pylori in Iran. Therefore, this study aimed to evaluate the efficacy and safety of adding the probiotic Saccharomyces boulardii to standard triple therapy for eradication of H. pylori.

Patients and Methods

In this randomized controlled trial we evaluated 160 adult patients with biopsy confirmed H. Pylori infection referred to gastroenterology ward in Taleghani hospital (a tertiary academic center in Tehran-Iran) during 2011-2012. All adult patients who came to our hospital and were candidate for upper GI endoscopy within 12 months were evaluated in this trial. Patients <15 years old, pregnant women or lactation patients with a history of hepatic, cardio-respiratory, renal, neoplastic diseases or coagulopathy, patients receiving antibiotics, PPIs, H2 receptor blockers, bismuth salts, or probiotics within the previous four weeks, patients with previous gastric surgery and sensitivity to any of the drugs used in this study were excluded from this study. The Ethics Committee of Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences approved the study and it was in agreement with the principles of the Helsinki II declaration. Moreover, the patients were informed about the study protocol and written consent was obtained from all patients. Patients with biopsy confirmed H. pylori were included. Then they were randomized into two treatment regimens: patients in Group A (n: 80) were given amoxicillin (1000 mg, b.i.d), clarithromycin (500 mg b.i.d), omeprazole 20 mg b.i.d and Saccharomyces boulardii probiotic (250 mg, b.i.d) for 14 days, and patients in Group B (n: 80) were given amoxicillin (1000 mg, b.i.d), clarithromycin (500 mg b.i.d) and omeprazole (20 mg b.i.d) for 14 days. Patient compliance was evaluated at the end of the treatment by pill count and was considered as good compliance if >95% of the medication had been taken. Modest compliance >70%, poor compliance <70% and dropped out.

Patients were asked to report any side effects of therapy during the treatment period (end of first, second, third and fourth weeks of treatment) and were given a possible side effect list, such as epigastric pain, diarrhea, taste disturbance, constipation, and stomatitis. Eight weeks after treatment, urea breath test (UBT) was performed in all patients. Successful eradication was defined as a negative 13C-urea breath test result (UBT) eight weeks after discontinuation of the therapy.

Statistical analysis

The data were entered in SPSS version 17. Values were reported as mean ± standard
Results

In this clinical trial, 160 patients (58.7% female) with mean age 47.1±11.4 years were evaluated. Regarding sex and age the difference between case and control groups was not significant (p>0.05).

The most frequent esophagogastroduodenoscopy (EGD) finding group A and B was antral gastritis (51% and 44% respectively). The difference between two groups was not significant (p>0.05) (figure 1).

The success rate for *H. pylori* eradication was higher in group A 75(87.5%) than in group B 65 (81.2%), but the difference between two groups was not significant (p=0.350) (Table 1).

Table 1. Distribution of *H.pylori* eradication and compliance in two groups

<table>
<thead>
<tr>
<th></th>
<th>Groups (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A (n=80)</td>
<td>B (n=80)</td>
</tr>
<tr>
<td>Compliance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>52(65)</td>
<td>46(58.2)</td>
</tr>
<tr>
<td>Moderate</td>
<td>23(28.8)</td>
<td>24(30.4)</td>
</tr>
<tr>
<td>Poor</td>
<td>5(6.3)</td>
<td>9(11.4)</td>
</tr>
<tr>
<td>UBT results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>70(87.5)</td>
<td>65(81.2)</td>
</tr>
<tr>
<td>Positive</td>
<td>10(12.5)</td>
<td>15(18.8)</td>
</tr>
</tbody>
</table>

Group A (n: 80) were given amoxicillin (1000 mg, b.i.d), clarithromycin (500 mg b.i.d), omeprazole 20 mg bid and *saccharomyces boulardii* probiotic (250 mg, b.i.d) for 14 days; Group B (n:80) were given amoxicillin (1000 mg, b.i.d), clarithromycin (500 mg b.i.d) and omeprazole (20 mg b.i.d) for 14 days.

Regarding drug compliance 52 (65.0%) in group A and 46 (58.2%) in group B showed good compliance. The difference between case and control groups was not significant (p>0.05) (Table 1).

The frequency of side effects as nausea, diarrhea, abdominal discomfort and bloating in group A, were significantly lower than group B in first and second weeks (p<0.05), whereas skin rash, insomnia in case group did not show remarkable difference compared to control group (Table 2).

Discussion

Recently, the alternative anti-*H. pylori* treatments have been extended and more studies have been steered to describe components that may effect on *H.pylori* infection. In general, probiotics can strengthen host systems and assist in recovery from certain diseases and in particular *S. boulardii* induces morphologic changes in *H. pylori* cells consistent with cellular damage (18) and in one trial by Gottel et al. was shown *S. boulardii* reduce 12% of *H. pylori* colonization in infected children (19). Furthermore, de Bortoli et al. indicated that the addition of probiotics to standard triple therapy (esomeprazole, clarithromycin, amoxicillin) could increase the eradication rate of *H. pylori* infection and reduce the side effects of antibiotic therapy (20).

To evaluate this hypothesis, we designed a comparative clinical trial study to assess any positive effect of *S. boulardii* on *H. pylori* infection and side effects of therapy. The success rate for *H. pylori* eradication was higher in probiotic group (87.5%) than control (81.2%), but the difference between two groups was not significant. However, side effects as nausea, diarrhea, abdominal discomfort and bloating were significantly lower in group A than group B during the first and second weeks. These findings were in accordance with Cremonini et al. study,
which indicated the efficacy of probiotics for eradication of *H. pylori* in 85 asymptomatic carriers. They randomized patients in three probiotic therapy groups (*S. boulardii*, *L. rhamnosus* GG or a mixture of *L. acidophilus* and *Bifidobacterium lactis*) and placebo for 14 days. After second week, the eradication rates were similar for all groups (81% for *S. boulardii* vs. 80% for placebo). However, antibiotic-associated diarrhea in all the probiotic groups was significantly lower (5%) than placebo group (30%) (21). Moreover, the other study by Cindoruk et al. in 2007 in turkey evaluated *S. boulardii* for both eradication of *H. pylori* and the reduction of side-effects of the standard triple treatment. They studied 124 carriers with dyspepsia who were receiving the triple therapy and randomized to either *S. boulardii* (1g) or placebo group for two weeks. Then patients were followed up for six weeks regarding side-effects and *H. pylori* eradication rate. The patients showed no significant difference in *H. pylori* eradication (71% in *S. boulardii*; 60% in placebo). However, epigastric distress and global dyspepsia symptom scores in *S. boulardii* group were significantly lower than control group (16).

In addition, Yasar et al. in another survey in turkey in 2010, studied the efficacy of probiotics in *H. pylori* eradication therapy and specified that the addition of probiotic-containing yogurt to the triple therapy did not significantly increase the *H. pylori* eradication rates. However, they informed that probiotics decreased the frequency of stomatitis and constipation (22).

Our results and these mentioned studies indicate that *S. boulardii* did not increase eradication rate of *H. pylori* where it significantly reduce the side effects of the standard triple therapy. On the other hand, Lesbros-Pantoflickova reported that probiotics reduce the risk of developing disorders associated with high degrees of gastric inflammation (23). Moreover, Wilhelm et al. reported probiotics reduce adverse effects and increase tolerability of *H. pylori* eradication regimens. They may especially be useful in patients with recurrent *H. pylori* infection and a history of gastrointestinal adverse effects with antibiotics (24). In addition, Kotowska signified that *S. boulardii* effectively reduces the risk of antibiotic-associated diarrhea in children (25).

The most of reviewed studies signified treatment with probiotics is relatively safe (22, 23, 26). However, it is not risk free and is potentially pathogenic (27). Moreover, a study described 3 patients with fungaemia after intake of *S. Boulardii* (28). In contrast to these findings, we did not detect any remarkable adverse effect related to *S. Boulardii* in group A of our study.

In conclusion, we showed *S. boulardii* decreased the adverse effects associated triple therapy but did not significantly increase the eradication rate of *H. pylori*. We suggest further trials with higher dose of *S. boulardii* or other

| Table 2. Frequency of side effects of probiotic in group A compare to group B |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
Group A (n=80) (%)	Group B (n=80) (%)											
Nausea	Diarrhea	Abdominal discomfort	Insomnia	Metal taste	Bloating	Rash						
1st week	2nd week	3rd week	4th week	1st week	2nd week	3rd week	4th week	1st week	2nd week	3rd week	4th week	
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------
12(15)	14(17.5)	5(6.3)	0	23(28.8)	29(36.3)	10(12.5)	1(1.3)	11(13)	10(12.5)	5(6.3)	1(1.3)	
17(21.3)	18(22.5)	6(7.5)	3(3.8)	42(52.5)	36(45)	19(23.8)	6(7.5)	17(21.3)	18(22.5)	9(11.3)	4(5)	
4(5)	1(1.3)	1(1.3)	0	5(6.3)	0	1(1.3)	1(1.3)	9(11.3)	8(10)	0	0	
17(21.3)	18(22.5)	9(11.3)	4(5)	37(46.3)	39(48.8)	18(22.5)	11(13.8)	3(3.8)	1(1.3)	0	0	

P<0.05
types of probiotics in combination with standard therapy, which may provide significant results.

Acknowledgements

We would like to thank all patients who participated in this study. The project is supported by Research Center for Gastroenterology and Liver Diseases. This article is taken from the Mehdi Ghobakhlo Fellowship thesis project.

References

