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ABSTRACT 
The small intestinal villus and its associated epithelium includes enterocytes as the main cell type and differentiated goblet and 
argentaffin cells, while the invaginated crypt epithelium is the site of cell division and hence the origin of all epithelial components. 
Enterocytes form a cohesive monolayer which acts both as a permeability barrier between lumen and the interior, and an important 
gateway for nutrient digestion, absorption and transport. Differentiation and polarisation of enterocytes depends on cytoskeletal 
proteins that control cell shape and maintain functionally specialised membrane domains; extracellular matrix (ECM) receptors; 
channels and transporters regulating ion/solute transfer across the cell. The mesenchymally-derived basement membrane dynamically 
controls morphogenesis, cell differentiation and polarity, while also providing the structural basis for villi, crypts and the 
microvasculature of the lamina propria so that tissue morphology, crucially, is preserved in the absence of epithelium. Mucosal re-
organisation requires immense cooperation between all elements within the lamina, including marked revisions of the 
microvasculature and extensive alterations to all basement membranes providing support for endodermal and mesenchymal 
components. In this context, subepithelial myofibroblasts fulfil important regulatory activities in terms of tissue morphogenesis; 
remodelling; control of epithelial cell development, polarity and functional attributes; and an intimate involvement in repair, 
inflammation and fibrosis. 
This paper reviews the main structural and functional aspects of the villus, including the epithelium and its outer glycocalyx and 
microvillous border; and subjacent to the epithelium, the basement membrane with its attached web of myo-fibroblasts together with 
the lamina propria core of the villi, and its microvasculature and lacteals. Finally, some comments on the rapidity with which the 
overall structure of the villi changes in their response to both external, and internal, influences. 
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Introduction–Why "Villus"? 
  1 Although the Latin "villus" refers to the "shaggy 
haired" nature of animals coats, Gabriele Falloppio 
(1523-1562), of tubal fame, first used the word "villi" 
in his 16th Century text "Observationes Anatomicae" 
(1561). However, his description derived from the feel 
and texture of velvet (1): any connection with the Latin 
is thus obscure. 
   During the 17-18th Centuries, microscopic anatomy 
did not exist, so that intestinal "villi" were deemed 
analogous to dermal papillae (rete pegs), since the 
overlying cellular basis of either dermis and epithelium 
– yet to be discovered - was simply regarded as an 
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amorphous, gelatinous surface coating. One can 
therefore understand why X. Bichat (1771-1802) came 
to employ the term "mucous membrane" for the first 
time in his "Traite des Membranes" (2) – although 
goblet cells had yet to be recognised. Thus intestinal 
"villi", at first, were only perceived in terms of their 
central cores, being seen as small, upwardly-projecting 
structures in wet preparations, their vessels defined 
through injections of red and green wax into mucosal 
arteries and veins. 
   The widespread use of microscopes during the 19th 
Century gave rise to the earliest descriptions of the 
cellular nature of the so-called "epithelium" (coined 
from the Greek ἐpi = upon, and θhlή = nipple). Two 
almost simultaneous sources for the discovery of 
epithelial cells came from F.G.J. Henle (of the renal 
tubular loop) in Germany (1837) (3), and W. Bowman 
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(of renal capsular fame) at King's College, London (4). 
However, Bowman's predecessor, Robert Todd, revised 
Henle's use of "prismatic" to "columnar" in describing 
individual cells. 
   A modern account of the villus and its associated 
epithelium includes the differentiated goblet and 
argentaffin cells, while the invaginated crypt epithelium 
is the site of cell division and hence the origins of all 
epithelial components. This paper reviews the main 
structural and functional aspects of the villus, including 
the epithelium and its outer glycocalyx and 
microvillous border; and subjacent to the epithelium, 
the basement membrane with its attached web of myo-
fibroblasts and cognate cells – pericytes, smooth 
muscle, fibroblasts and muscularis mucosae, and outer 
cells of Cajal. Here we encounter the lesser explored 
lamina propria core of the villi, which includes the 
microvasculature and lacteals. Finally, some comments 
on the rapidity with which the overall structure of the 
villi changes in their response to both external, and 
internal, influences. 

The epithelium and brush border – the ins and outs 
   The intestinal tract is lined by a single layer of 
columnar epithelium originating from multipotent stem 
cells at the base of each crypt, giving rise (5) to four 
major types of epithelial cells: (i) absorptive 
enterocytes comprising >80% of all small intestinal 
epithelial cells; (ii) goblet cells producing various 
mucins and trefoil peptides needed for epithelial growth 
and repair; (iii) entero-endocrine cells which export 
peptide hormones; and (iv) Paneth cells which secrete 
antimicrobial cryptidins or defensins, digestive 
enzymes, and growth factors. Following their 
differentiation, enterocytes, goblet and entero-
endocrine cells migrate upwards thus to be exfoliated 
(from presumptive "extrusion zones") (6) at the villous 
tips after approximately five days (7). Transfection of 
basal crypt cells with marker proteins permits 
examination of the successive changes occurring in 
enterocytes as they leave the crypts (8). Indeed, 
distinctive switches in gene expression patterns during 
contact with neighbouring cells casues down-regulation 
of differentiation signals in favour of those now 
necessary for specialised functions as polarised cells, 
especially at the brush border zone (9,10 ). 
   Complex signaling pathways implicated in the 
regulation of specific differentiation of the cells in the 

intestine include Wnt -β-catenin-TCF, Notch and its 
downstream effectors - HES1 and Math1, BMP-TGF-
β-SMAD, and hedgehog (Hh). A number of 
transcription factors, many of which are downstream 
targets of these signaling pathways, including cdx-1 
and cdx-2; kruppel-like factor; GATA4, 5 and 6 
together with several forkhead family members, E-
cadherin-mediated cell-cell and integrin-mediated cell-
matrix adhesion; chemotactic gradients; extracellular 
matrix and mesenchymal components; and a range of 
cytokines, hormones and growth factors, have each 
been implicated in the regulation of intestinal cell 
maturation. This is too expansivea field for detailed 
discussion here. 
   As newly-formed enterocytes migrate from the 
crypts, they develop the apical "brush border" 
comprising microvilli approximately 1μM in length and 
0.1μM in diameter. There are approximately 3,6000 
(±450) microvilli per cell (Marsh, unpublished) thereby 
increasing the surface area by ~10-20 fold (11). The 
resulting increased 'reserve' of surface membrane 
allows additional specialised functions permitting 
membrane-associated macromolecular digeston and 
absorption (12,13), and facilitating defences at this 
important host-environmental interface (14).  
   Together, enterocytes form a cohesive monolayer 
which acts as a permeability barrier between lumen and 
the interior, and as an important gateway for nutrient 
digestion, absorption and transport (15). Differentiation 
and polarisation of enterocytes depends on cytoskeletal 
proteins (16,17) that control cell shape and maintain 
functionally specialised membrane domains; 
extracellular matrix (ECM) receptors; channels and 
transporters regulating ion/solute transfer across the 
cell (Figure 1). As already hinted, the microvilli 
together with their enzymes and transporter proteins 
represent the most important functional differentiation 
within the villus for digestion/absorption of 
carbohydrate, proteins, lipids, minerals and vitamins. 
Subsequent processing within the enterocyte requires 
the help of secretory and sorting pathways. 

The basement membrane – potentiating potential 
   Histologically, basement membranes appear as 
insignificant thin strips of homogeneous, amorphous 
pink material lying between epithelium and subjacent 
mesenchymal elements, such as myofibroblasts. Many 
years ago, this region was shown to be periodic acid-   
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Schiff positive and hence rich in glycoprotein(s), while 
electron microscopy revealed the presence of fibrillar 
material. 
   Basement membranes are ubiquitous throughout the 
body, containing laminin-1, fibronectin, type IV 
collagen, entactin (nidogen), together with perlecan 
(18) as the major component of heparan sulphate 
proteoglycans (HSPG) (19). Laminin and collagen IV 
are mainly synthesised by mesenchyme, while HSPG 
derives from the basal epithelium, as also entactin 
(nidogen) (20).  However, fully-formed and functional 
basement membrane depends critically on 
mesenchymal derivatives. Moreover, laminin A chain 
synthesis is accelerated, and selectively, as the foetal 
intestine matures towards the end of gestation with the 
onset of epithelial cell differentiations (21,22). There is 
also evidence of spatial orientation of HSPG and 
laminin chains more-or-less orthogonally across the 
basement membrane, thus not only strengthening the 
intermolecular cross-binding of these cruciate 
molecules (23), but also providing specific anchorage 
between them and overlying cell membranes. Their 

molecular dimensions indicate their capability of 
spanning the entire thickness of basal laminae (24,25 ). 
   Yet despite these recent insights, several problems 
remains (26): are basement membranes homogeneous 
throughout, both along the entire intestinal tract and at 
all levels between the crypts and villous tips? what 
relationship exists between the upward migration of the 
epithelium and possible molecular changes in the 
membrane at the so-called extrusion zones at tips of 
villi? and are cells only extruded from the upper 
reaches of the villi given, for example, the vast excess 
of crypts in some species? (27). These anatomical 
variants both in crypt ratios to villi and the structural 
variations between pencil-shaped and leaf-shaped villi, 
call into question the often-assumed existence of 
extrusion zones located (only) at villous tips. Very 
careful studies on resected pieces of full thickness 
bowel have been disappointing in revealing site(s) of 
desquamation (28), while the locus of the increased rate 
of enterocyte loss in flat coeliac mucosae, for example, 
has never been precisely defined. Indeed, the concept 
of "extrusion zones" at villous tips seems rather more a 

 
Figure 1. This diagram represents the molecular structure of the BB. Actin filaments within each microvillus are bundled by 
villin, espin, and fimbrin which also serve to stabilize the actin core. Molecules such as unconventional myosins and ERM (ezrin, 
radixin, moesin) family proteins cross-link the plasma membrane to the underlying actin cytoskeleton while extracellular 
adhesion molecules such as cadherin family members—protocadherin-24 (PCDH24) and mucin-like protocadherin (MLPCDH) 
mediate intermicrovillar adhesion during brush border assembly. Between the external and internal surfaces of the microvillus 
membrane brush border enzymes are located. Adapted from Crawley et al (12). 
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mythology than reality, perhaps. Rather, it is more 
likely that cells are removed at all points along the 
villous epithelium (29) even from the inter-villous 
regions of the mucosa (30) and may be the reason why 
desquamated cells are very difficult to observe, 
especially when only thin histological sections are 
employed for identification. 
   Another problem is how the epithelium, collectively, 
moves along the basement membrane. Earlier studies 
suggested that epithelium and subjacent myofibroblasts 
move upwards in a cohesive manner (31,32) but that 
may not be so (33): indeed, we have very little 
knowledge about the turnover of these cells and their 
means of replacement. We must also remember that 
due to villous tip narrowing, the changing apical 
geometry demands considerable shedding if the cells 
remaining are to retain contact with the basement 
membrane. That difficulty remains to be elucidated. 
   The appearance of the basement membrane as a 
continuous sheet is probably artefactual on account of 
the coagulation of its glycoprotein elements during 
fixation and processing: but scanning EM has drawn 
attention to "holes" (~0.5-5μM diameter) disrupting its 
continuity (34,35). It hardly seems likely that this 
membrane arises de novo as a perforated sieve. Rather, 
these perforations must therefore reflect those items, 
like migratory cells, basally-extruded enterocyte 
projections, together with inert material, which pass 
through it. It was shown in earlier studies that the 
membrane could be breached, albeit with some 
apparent mechanical difficulty. In those studies of 
inflammatory exudates, Sir Howard Florey in Oxford 
noted membrane bulging in the presence of emigrating 
inflammatory cells (36,37), thus rejecting ideas of 
being 'softened up'. That is presumably incorrect, since 
malignant cells when breaking out of the conformity of 
a regular epithelium do secrete enzymes, most crucially 
against collagen IV (38,39). This information, 
additionally, corroborates the specific mechanical 
contribution of this protein in maintaining structural 
integrity of basement membranes. Conversely, it is 
unlikely that transmigrating lymphocytes have such 
aggressive properties. Neither would the passive (?) 
movement of chylomicrons (0.5-1.0nm diameter) 
require such behaviour, despite their obvious 
movement through the membrane (40,41). A more 
likely explanation for these breaches probably rests in 

the physic-chemical make-up of the basement 
membrane itself which momentarily dissolves under 
local forces (rather like thixotropic "non-drip" paint 
which liquefies only under pressure from the 
paintbrush) (42). 
   Another intriguing relevant perspective, neither fully 
explored nor resolved, involves the presence of 
epithelial cell pseudopodia traversing the membrane to 
contact mesenchymal cells. It is probable that the 
marked increase in number and size of projections 
during end-gestational development (43) may well 
correlate with the activity of mesenchyme in promoting 
epithelial maturation and polarity, and hence functional 
capacity and potential (9,11,44). That momentary 
cross-talk between epithelium and mesenchyme, 
unfortunately, has neither been entirely corroborated 
nor defined. 
   To what extent, therefore, do messages from the 
mesenchyme control and direct epithelium? We have 
seen that a mesenchymally-derived basement 
membrane dynamically controls morphogenesis, cell 
differentiation and polarity, while also providing the 
structural basis for villi, crypts and the 
microvasculature of the lamina propria, so that tissue 
morphology is preserved in the absence of epithelium. 
Now, in terms of mucosal (coeliac) "flattening", the 
frequently asserted presumption that loss of epithelium 
explains altered surface topology, especially by 
immunologists (45,46) whose conclusion, that IEL 
primed for enterocyte cytolysis provides the answer, is 
hardly sufficient.  
   But as we have argued elsewhere (47,48) such views 
are highly suspect since mucosal re-organisation 
requires immense cooperation between all elements 
within the lamina, including marked revisions of the 
microvasculature and extensive alterations to all 
basement membranes offering support to endodermal 
and mesenchymal components. Hence, we need to be 
very sure, even in these immune-driven situations, 
whether the force for change comes totally, or partially, 
from controlling influences elsewhere, or more 
specifically perhaps, from within the mesenchyme 
itself. Indeed, the mesenchyme may be the originating 
force which controls tissue shape and integrity to a far 
greater extent than has ever been realised hitherto, even 
to contributing to the innate immune response of 
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tissues: a point recently articulated by others 
(49,50,51). 

The lamina propria & the myofibroblast 
subepithelial cell system 
In stark contrast to other studies on mucosal 
morphology and the villous epithelium, detailed 
analyses of the lamina propria have not been so 
prominent, either in regard to normal functioning or to 
pathological processes. Although the lamina propria 
contains a variety of haemopoietically-derived 
infiltrating cells (eosinophils, basophils, neutrophils, 
lymphocytes), we know little about its basic content of 
residual structural cells, their associated 
macromolecular repertoire (matrix proteoglycans), and 
how these are altered by specific disease processes. 
Histologically, the lamina is difficult to analyse, rather 
more being regarded simply as the region lying 
between the crypts and forming the internal villous 

core.  
   However, the lamina is bounded by a system of 
myofibroblasts which is intimately applied to the 
under-surface of the basement membrane, and directly 
connected with the subepithelial capillary vascular 
network of pericytes (52,53,54,55,56). In addition to 
various fibrous elements (including collagen IV, 
tenascin, desmin, entactin, laminins), the "ground 
substance" comprises a gel-like mixture of 
glycoaminoglycans of which hyaluronic acid is a 
prominent component. The degree of hydration of this 
matrix is dependent on the balance of absorbed fluid, 
secretions, and rate of removal through the 
microvasculature and lymphatics. Each villus is 
supplied by a central arteriole which branches into 
capillaries at its tip into a local tuft. This begins 
draining into a venule which takes origin from about 
the upper one-third of the villus. Below this tuft, the 

 
Figure 2.  This diagram represents the types of bone-marrow cell derivatives operative within the lamina propria. They include 
(in cerise) the subepithelial myofibroblast system (MYF); pericytes (green) supporting the subepithelial capillaries and main 
vasculature of the villi (artery, red: vein, blue); the lacteal (L) supported by smooth muscle cells (SM) and (purple) the 
muscularis mucosae (MM). The basement membrane (green) is perforated (but artefactually so during processing for 
microscopy), comprising glycoglucosamines and fibres (such as collagen IV, tenascin, elastin, etc) which are all largely 
derivative of the mesenchymal cell populations illustrated. 
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lower capillaries drain vertically downwards, subjacent 
to the basement membrane and fibroblast sheath, where 
they join vessels associated with the crypt mouths (57, 
58): the dual structure of the subepithelial capillary 
sheath in human intestine should be noted. The central 
lacteal is clothed in smooth muscle cells in its upper 
part before its division into smaller tributaries, the latter 
only being supported by pericytes (also now considered 
to be part of the myofibroblastic system) (Figure 2). 
   In view of recent important advances over the last 
few decades, attention should now be focussed on the 
myofibroblast system throughout the lamina propria 
and the different phenotypes emerging from within that 
system (59,60,61). It comprises a ubiquitous population 
of cells (62) that is usually α-SMActin + (smooth 
muscle), tenascin-C+ and desmin+, but in intense 
inflammation, as with Crohn's or IBD disease (63), they 
are prone to lose these markers when de-differentiating 
into fibroblasts which may also therefore be the source 
of intestinal fibrosis and stricture formation.  
   Their precursors could all derive from the bone 
marrow (64). This was demonstrated in an ingenious 
use of intestinal biopsy material from female patients 
thought to be developing GVHD after receipt of whole 
blood transfusions from male donors. Using the Y 
chromosome as evidence, they detected α-SMA+ donor 
cells within the pericryptal myofibroblast sheath of 
three biopsies. Therefore, these migrating cells 
probably arose from stromal cells, and possibly from 
among circulating "fibrocytes" (65) within the 
bloodstream. Interestingly, although not formally 
interrogated, these donor cells appeared to reach onto 
the villi, so the possibility of their migratory potential 
has not yet been entirely ruled out. 
   Subepithelial myofibroblasts, histologically, reveal a 
smooth muscle appearance but which variously 
(according to organ/tissue type) fulfil important 
regulatory activity in terms of tissue morphogenesis; 
remodelling (following injury); control of epithelial cell 
development, polarity and functional attributes; and an 
intimate involvement in repair, inflammation and 
fibrosis. In addition to the subepithelial fibroblast 
network, this group of cells also provides the pericytes 
in support of the microcirculation, as well as the 
vertically-aligned smooth muscle supporting the lacteal 
system within each villus. Their contractile properties 
are thus probably responsible for the contraction of 

individual villi, as presumably indicated by their 'fir-
tree' profiles seen histologically, and in the 
horizontally-disposed folds revealed by scanning EM, 
thereby encouraging effective fluid transfer, and 
probably also aiding loss of cells from the epithelial 
surfaces. 

Evaluating the villus – from normal to 
abnormal 
   This brief review emphasises the complexity of the 
structural, cellular, non-cellular, and gene-based 
aspects of villus-orientated biology, exemplifying, over 
the last 50 years, the vast expansion in knowledge 
applicable to its various parts. In addition, the villus is 
subject to varied influences, as typified by responses to 
gluten ingestion in genetically-predisposed individuals 
(66,67); high bacterial intestinal loads resulting in the 
host-directed syndrome of tropical ("sprue") 
enteropathies (68,69); or parasites - especially Giardia 
species (70), all of which evoke profound changes in 
villous morphology. While some of these changes are 
minimal, others result in significant re-modelling of the 
mucosa architecture: the spectrum of 
immunopathologic changes is tabulated for comparison 
(Table 1).  
   Much of the work done on these conditions, although 
principally from a clinico-pathological, diagnostic 
viewpoint, has centred specifically on the epithelium 
and its lymphocytic infiltrations; the shape of the villi; 
on the nature of its severest changes ("flattening"); with 
very scant attention being given to the lamina propria. 
These progressive changes (related in the main to 
gluten-induced hyper-sensitivity reactions) and the 
relevant computer-aided morphometric data have 
recently been schematically illustrated (48) thereby 
indicating both the time-frame, and key locations 
within the mucous membrane at which these changes 
are progressively initiated. 
   Myofibroblasts, as we have shown, arise in the 
mucosa from circulating fibroblasts, and which in the 
presence of pro-inflammatory proteins synthesise extra-
cellular matrix (ECM). If the latter is disorganised 
through tissue remodelling (as signally occurs in the 
evolution of the characteristic coeliac mucosa), 
fibroblasts acquire stress fibres, gradually being 
transformed into mature myofibroblasts expressing α-
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SMA. Myofibroblast differentiation requires three 
stimuli: a) TGF-β1); special ECM proteins like ED-A 
(a splice variant of fibronectin); and c) stress resulting 
from tissue remodelling (71,72). Despite that, and in 
contrast to pulmonary fibrosis, liver cirrhosis, or the 
chronic cicatrizing fibrosis of Crohn's disease, 
extensive fibrosis is not a major feature of celiac 
mucosae, the former possibly due to a breakdown in 
epithelial-to-mesenchymal (EMT) transitions (73). 
   EMT interactions are essential in foetal intestinal 
development and later adult architecture, a process 
critically dependent on epithelial Hedgehog (Hh) in the 
formation of the lamina propria. Hh binds to Patched 

(Ptch) on target cell membranes (74, 75). Indeed in 
studies of mice programmed for chronically-reduced 
Hh signalling, the result was the development of 
diarrhoea, malabsorption, weight loss and malnutrition 
accompanied structurally by a reduced villous heights, 
crypt hypertrophy and inflammation in the lamina (76). 
In addition, there was loss of smooth muscle leading to 
failure of lacteal development, here analogous with 
intestinal lymphangiectasia. 
   The purpose of this essay was not primarily to notice 
the acquired pathology of diseases affecting the villus. 
Nonetheless, these very brief remarks illustrate just 
how little is known about the remodelling of the 

Table 1. Some prominent pathologies leading to villus deformities 
 
 

«Normal»/ 
Preinfiltrative 

Marsh 0 

Infiltrative 
Marsh I 

Infiltrative/ 
Hyperplastic 

Marsh II 

«Flat»/ 
Mosaic 

Marsh III 

«Flat»/ 
Unresponsive 

Marsh IV 
Disorder      
Gluten hypersensitivitya + + + + + 
Tropical sprueb +/- + + + - 
Chronic diarrhoea/Marasmusc +/- + + + - 
Giardiasis/infectionsd + + + + - 
GVHDe - + + + - 
Food antigensf 

 Milk 
 Egg 
 Soya 
 Chicken 

 
- 
- 
- 
- 

 
+ 
- 
+ 
- 

 
+ 
- 
+ 
- 

 
+ 
- 
+ 
+ 

 
- 
- 
- 
- 

Transport and enzyme disordersg 
 Carbohydrate intolerance 
 Abetalipoprotein-aemia 
 Chylomicron retention disease 

 
 

+ 
 

+ 
 

+ 

 
 
- 
 
- 
 
- 

 
 
- 
 
- 
 
- 

 
 
- 
 
- 
 
- 

 
 
- 
 
- 
 
- 

Immunodeficienciesh 
 CVID 

 
+ 

 
+ 

 
+/- 

 
- 

 
- 

IBDi + + + - - 
Drugs (NSAIDs)j + + + +/- - 
Neonatal enteropathiesk 

 Microvillus inclusion disease 
 Tufting enteropathy 
 Enteroendocrine cell 

dysgenesis 

 
 

+ 
 

+ 
 

+ 

 
 

+/- 
 
- 
 
- 

 
 

+/- 
 
- 
 
- 

 
 

+/- 
 
- 
 
- 

 
 
- 
 
- 
 
- 

(i) These gluten-induced and other hypersensitivity reactions lead to alterations in villous shape, ultimately being involved in the hyperplastic 
remodelling of mucosa into mosaic plateaux. Villi do not undergo atrophy, however, and neither is the mucosa subject to any atrophic process, 
since structural recovery ensues following use of a gluten-free diet: 
(ii) The minimal change mucosal lesions (Marsh I and II) cannot be non-specific, because they represent specific host responses to identified 
inciting antigens: 
(iii) The subdivision of Marsh III (a, b, c) has been shown in various independent studies to have no practical value: this misinterpretation results 
from the failure to recognise the elevated mosaic plateaux which amalgamate villi into these lozenge-shaped blocks of tissue. It follows [see Note 
(i]) that attempted sub-classification of the severe Marsh III lesion are futile, and would be better to be abandoned:   
 (iv) Immunodeficiency’s, Inflammatory bowel diseases (IBD), particularly Crohn’s disease and drugs may cause intraepithelial lymphocytosis 
similar to the Marsh I and II lesions while flat mucosa is only rarely encountered.  
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mucosa in terms of genetic activation or deficiency, 
indicating the vast chasm which needs to be 
investigated, understood and further integrated into 
current understandings of mucosal disease. Their 
relevance to celiac disease is immediately apparent, and 
again with observations which distract strongly away 
from the idea that mere "atrophy" has anything to do 
with these profound tissue re-arrangements. 
   However, in light of this review, it is clear that much 
more work needs to be done on small bowel 
enteropathies regarding changes in the lamina propria 
and the role taken by the syncytial subepithelial 
myofibroblast sheath. Mucosal re-modelling is not 
simply related to loss of epithelial cells, as often widely 
assumed. This, therefore, remains a challenge. It 
requires further investigation of the Hedgehog and Wnt 
series of genes (77) which exert such major influences 
on mucosal structure, development, maintenance, and 
pathology. It is inconceivable that this feature of the 
mucosa does not exert a prominent role in the 
immunopathogenic changes which have already been 
described: some encouraging starts have already been 
made (78) and which should stimulate further research 
in this area, thus bringing newer insights into how these 
changes are brought about – and, of course, reversed 
following treatments. 
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