• Logo
  • SBMUJournals

Optimization of Xanthan Gum Production from Grape Juice Concentrate Using Plackett-Burman Design and Response Surface Methodology

Tahereh Ghashghaei, Mohammad Reza Soudi, Saman Hoseinkhani
837

Views

PDF

Abstract

Low grade grape juice concentrate was used as carbon source for xanthan production. Significant factors affecting xanthan concentration, productivity and viscosity were investigated using Plackett-Burman Design. Based on the obtained results, carbon and nitrogen concentrations, inoculum size and agitation rate, were assumed as significant factors. Broth culture viscosity and xanthan concentration were optimized using Response Surface Methodology with four independent variables: carbon source (30, 40, 50 g l-1), ammonium sulfate as nitrogen source (0.5, 1.25, 2 g l-1), agitation (150, 200, 250 rpm) and inoculum size (5, 10, 15% v v-1). Optimum level for each factor was obtained by desirability function approach. The average of xanthan gum production and its viscosity under optimized conditions were recorded as 14.35 g l-1 and 1268 cP, respectively. The average yield of production and productivity of xanthan within 72 h under optimized conditions were 35% and 0.19 g l-1 h-1, respectively. The current study showed the potential of low-grade grape juice concentrate as an economic carbon source for xanthan gum production.


Keywords

Grape juice concentrate, Optimization, Plackett-Burman Design, Response Surface Methodology, Xanthan production

References

Sandford PA, Baird J. Industrial utilization of polysac-charide. In: Aspinall GO (ed) The polysaccharides, Vol 2. Academic Press. New York. 1983: 411-490. DOI: 10.1007/978-1-4615-2185-3-2

Gumus T, Sukru Demirci A, Mirik M, Arici M, Aysan Y. Xanthan gum production of Xanthomonas spp. isolated from different plants. Food Sci Biotechnol; 2010 19: 201-206. DOI: 10.1007/s10068-010-0027-9

Mirik M, Demirci AS, Gumus T, Arici M. Xanthan gum production under different operational conditions by Xanthomonas axonopodis pv. vesicatoria isolated from pepper plant. Food Sci Biotechnol. 2011; 20: 1243–1247. DOI: 10.1007/s10068-011-0171-x

García-Ochoa F, Santos VE, Casas JA, Gómez E. Xanthan gum: Production, recovery, and properties. Biotechnol Adv. 2000; 18: 549-579. DOI: 10.1016/S0734-9750 (00)00050-1

Chen CSH, Sheppard EW. Conformation and shear stability of xanthan gum in solution; Polym Eng Sci. 1980; 20: 512-516. DOI: 10.1002/pen.760200712

Milas M, Rinaudo M. Properties of xanthan gum in aqueous solutions: Role of the conformational transition. Carbohyd Res. 1986; 158: 191-204. DOI: 10.1016/0008-6215 (86)84017-4

Richardson RK, Ross-Murphy SB. Nonlinear viscoelasticity of polysaccharide solutions: Xanthan polysaccharide solutions. Int J Biol Macromol. 1987; 9: 257-264. DOI: 10.1016/0141-8130(87)90063-8

Nolte H, John S, Smidsrud O, Stokke B. Gelation of xanthan with trivalent metal ions. Carbohyd Polym. 1992; 18: 243-251. DOI: 10.1016/0144-8617(92)90089-9

Lambert F, Rinaudo M. On the thermal stability of xanthan. Polym. 1985; 26: 1549-1553. DOI: 10.1016/ 0032-3861(85)90092-8

Hatakenaka K, Liu W, Norisuye T. Stability of xanthan in aqueous sodium chloride at elevated temperature. Int J Biol Macromol. 1987; 9: 346-348. DOI: 10.1016/0141-8130(87)90007-9

Kierulf C, Sutherland IW. Thermal stability of xanthan preparations; Carbohyd Polym. 1988; 9: 185-194. DOI: 10.1016/0144-8617(88)90024-0

Sutherland IW. Novel and established applications of microbial polysaccharides. Trend Biotechnol. 1998; 16: 41-46. DOI: 10.1016/S0167-7799(97)01139-6

Ben Salah R, Chaari K, Besbes S, Ktari N, Blecker C, Deroanne C, Attia H. Optimization of xanthan gum production by palm date (Phoenix dactylifera L.) juice by-products using response surface methodology. Food Chem. 2010;121:627633. DOI:10.1016/j.foodchem. 2009 12.077

Roseiro JC, Esgalhado ME, Amaral-Collaço, Emery AN. Medium development for xanthan production. Process Biochem. 1992; 27: 167-175. DOI: 10.1016/ 0032-9592(92)87005-2

Soudi MR, Alimadadi N, Ghadam P. Minimal phenotypic test for simple differentiation of Xantho-monas campestris from other yellow-pigmented bacteria isolated from soil. Iran J Microbiol. 2011; 3: 84-91.

Kalogiannis S, Iakovidou G, Liakopoulou-Kyriakides M., Kyriakidis DA, Skaracis GN. Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochem. 2003; 39: 249-256. DOI: 10.1016/S0032-9592 (03)00067-0

Niknezhad SV, Asadollahi MA, Zamani A, Biria D. Optimization of xanthan gum production using cheese whey and response surface methodology. Food Sci Biotechnol. 2015; 24: 453-460. DOI: 10.1007/s10068-015-0060-9

Moreno J, Lopez MJ, Garcia CV, Vazquez R. Use of agricultural waste for xanthan production by Xanthomonas campestris. J Ind Microbiol Biot. 1998; 21: 242-246. DOI: 10.1038/sj.jim.2900582

Vidhyalakshmi R, Vallinachiyar C, Radhika R. Produ-ction of xanthan from agro-industrial waste. J Adv Sci Res 2012; 3: 56-59.

Khosravi DK, Reyhani SF, Nasernejad B. Bench scale production of xanthan from date extract by Xanthomonas campestris in submerged fermentation using central composite design. Afr J Biotechnol. 2011; 10: 13520-13527. DOI: 10.5897/AJB11.018

This P, Lacombe T, Thomas MR. Historical origins and genetic diversity of wine grapes. Trends Genet. 2006; 22: 511-519. DOI: 10.1016/j.tig.2006.07.008

Mohamadi SA. Determination of grape juice concen-trates composition. Nutr Food Sci. 2013; 43: 462-466. DOI: 10.1108/NFS-08-2012-0081

Albalasmeh AA, Berhe AA, Ghezzehei TA. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophoto-metry. Carbohyd Polym. 2013; 97: 253-261. DOI: 10.1016/j.carbpol.2013.04.072

Soudi MR, Ebrahimi M, Sharyat PS: Xanthan gum production using whey for preculture preparation, In: Mendez VA, Modern multidisciplinary applied microb-iology: Exploiting microbes and their interactions, Wiley-VCH, 2006: 265-268. DOI: 10.1002/ 9783527611904.ch46

Khodadoust S, Hadjmohammadi M, Determination of N-methylcarbamate insecticides in water samples using dispersive liquid-liquid microextraction and HPLC with the aid of experimental design and desirability function. Anal Chim Acta. 2011; 699: 113-119. DOI: 10.1016/j.aca.2011.04.011

Psomas SK, Liakopoulou-kyriakides M, Kyriakidis DA. Optimization study of xanthan gum production using response surface methodology. Biochem Eng J. 2007; 35: 273-280. DOI:.1016/j.bej.2007.01.036

Cadmus M, Knutson CA. Production of high pyruvate xanthan gum on synthetic medium. 1983; US patent, 4394447

Leela JK, Sharma G. Studies on xanthan production from Xanthomonas campestris. Bioprocess Eng. 2000; 23:687-689. DOI: 10.1007/s004499900054

Papagianni M, Psomas SK, Batsilas L, Paras SV, Kyriakidis DA. Xanthan production by Xanthomonas campestris in batch cultures. Process Biochem. 2001; 37: 73-80. DOI: 10.1016/S0032-9592(01)00174-1

Tait MI, Shutherland IW, Clarke-Sturman AJ. Effect of growth condition on production, composition and viscosity of Xanthomonas campestris. J Gen Microbiol. 1986; 132: 1483-1492

Palaniraj A, Jayaraman V, Hariram SB. Influence of nitrogen sources and agitation in xanthan gum production by Xanthomonas campestris. Int J Adv Biotechnol Res. 2011; 2: 305-309

Souw P, Demain A. Role of citrate in xanthan production by Xanthomonas campestris. J Ferment Technol. 1980; 58: 411-416.

Kurbanoglu EB, Kurbanoglu NI. Ram horn hydrolysate as enhancer of xanthan production in batch culture of Xanthomonas campestris EBK-4 isolate. Process Biochem. 2007; 42: 1146-1149. DOI: 10.1016/j.procbio. 2007.04.010

Moshaf S, Hamidi- Esfahani Z, Azizi MH. Statistical optimization of xanthan gum production and influence of airflow rates in lab-scale fermentor. Appl Food Biotechnol. 2014; 1: 17-24.

Stredansky M, Conti E. Xanthan production by solid state fermentation. Process Biochem. 1999; 34: 581-587. DOI: 10.1016/S0032-9592(98)00131-9

Yoo SD, Harcum SW. Xanthan gum production from waste sugar beet pulp. Bioresour Technol. 1999; 70: 105-109. DOI: 10.1016/S0960-8524 (99)00013-9

Lopez MJ, Moreno J, Ramos-Cormenzana A. The effect of olive mill waste waters variability on xanthan production. J Appl Microbiol. 2001; 90: 829-35. DOI: 10.1046/j.1365-2672.2001.01326.x




DOI: https://doi.org/10.22037/afb.v3i1.9984

Refbacks

  • There are currently no refbacks.