• Logo
  • SBMUJournals

Overview of systems and techniques for surface display of recombinant proteins in yeast S. cerevisiae

Renata Teparic, Vladimir Mrsa




In the past decade much effort has been devoted to the development of new expression systems and novel techniques for the surface display of heterologous proteins in yeast in order to improve their applications in biotechnology, food technology, pharmacology and medicine. Heterologous protein-encoding genes are generally fused with genes coding for yeast cell wall proteins or their fragments required for anchoring. The variety of reactions by which a protein can be displayed at the cell surface enables finding the appropriate one for each individual protein. However, it is still challenging how to improve the efficiency of display of protein complexes and increase the quantity of protein displayed on the yeast surface. Recently, synthetic protein chimeras that self-assemble into the scaffolds on the yeast surface displaying different proteins have been constructed. This review focuses on systems and techniques for display of recombinant proteins on the yeast cell surfaces and applications afforded by this technology.


Genetic immobilization, Heterologous protein, Surface display, Yeast cell wall


Abe H, Ohba M, Shimma Y, Jigami Y. Yeast cells harboring human -1,3-fucosyltransferase at the cell surface engineered using Pir, a cell wall-anchored protein. FEMS Yeast Res. 2004; 4: 417-425. DOI: 10.1016/S1567-1356(03)00193-4

Matsumoto T, Fukudu H, Ueda M, Tanaka A, Kondo A. Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl Environ Microbiol. 2002; 68: 4517-4522. DOI: 10.1128/AEM.68.9.4517-4522.2002

Nakamura Y, Shibasaki S, Ueda M, Tanaka A, Fukuda H, Kondo A. Development of novel whole-cell immunoadsorbents by yeast surface display of the IgG-binding domain. Appl Microbiol Biotechnol. 2001; 57:500-505. DOI: 10.1007/s002530100802

van der Vaart JM, Biesbeke R, Chapman JW, Toschka HY, Klis FM, Verrips T. Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell expression of heterologous proteins. Appl Environ Microbiol. 1997; 63:615-620.

Ito J, Kosugi A, Tanaka T, Kuroda K, Shibasaki S, Ogino C, Ueda M, Fukuda H, Doi RH, Kondo A. Regulation of the display ratio of enzymes on the Saccharomyces cerevisiae cell surface by the immunoglobulin G and cellulosomal enzyme binding domains. App Environ Microbiol. 2009; 75:4149-4154. DOI:10.1128/AEM.00318-09

Tsai SL, Oh J, Singh S, Chen R, Chen W. Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol. 2009; 75:6087-6093. DOI:10.1128/AEM.01538-09

Wen F, Sun J, Zhao H. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol. 2010; 76:1251-1260. DOI:10.1128/AEM.01687-09

Watari J, Takata Y, Ogawa M, Sahara H, Koshino S, Onnela ML , Airaksinen U, Jaatinen R, Penttilä M, Keränen S. Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast. 1994; 10: 211-225. DOI: 10.1002/yea.320100208

Sato N, Matsumoto T, Ueda M, Tanaka A, Fukuda H, Kondo A. Long anchor using Flo1p protein enhances reactivity of cell surface-displayed glucoamylase to polymer substrates. Appl Microbiol Biotechnol. 2002; 60: 549-747. DOI 10.1007/s00253-002-1121-6

Breinig F, Diehl B, Rau S, Zimmer C, Schwab H, Schmitt MJ. Cell surface expression of bacterial esterase a by Saccharomyces cerevisiae and its enhancement by constitutive activation of the cellular unfolded protein response. App Environ Microbiol. 2006; 72: 7140-7147. DOI:10.1128/AEM.00503-06

Shigechi H, Koh J, Fujita Y, Matsumoto T, Bito Y, Ueda M, Satoh E, Fukuda H, Kondo A. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylase. Appl Environ Microbiol. 2004; 70: 5037-5040. DOI:10.1128/AEM.70.8.5037-5040.2004

Nakamura Y, Matsumoto T, Nomoto F, Ueda M, Fukuda H, Kondo A. Enhancement of activity of lipase-displaying yeast cells and their application to optical resolution of (R, S)-1-benzyloxy-3-chloro-2-propyl monosuccinate. Biotechnol Progr. 2006; 22: 998-1002. DOI: 10.1021/bp060136m

Tanino T, Ohno T, Aoki T, Fukuda H, Kondo A. Development of yeast cells displaying Candida antarctica lipase B and their application to ester synthesis reaction. Appl Microbiol Biotechnol. 2007; 75: 1319-1325. DOI: 10.1007/s00253-007-0959-z

Jiang Z, Gao B, Ren R, Tao X, Ma Y, Wei D. Efficient display of active lipase LipB52 with a Pichia pastoris cell surface display system and comparison with the LipB52 displayed on Saccharomyces cerevisiae cell surface. BMC Biotechnol. 2008; 8:4-10. DOI: 10.1186/1472-6750-8-4

Schreuder MP, Brekelmans S, van den Ende H, Klis FM. Targeting of heterologous proteins on the surface of yeast cells. Yeast. 1993; 9: 399-409. DOI: 10.1002/yea.320090410

Murai T, Ueda M, Yamamura M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Amachi T, Tanaka A. Construction of a strach-utilizing yeast by cell surface engineering. Appl Environ Microbiol. 1997a; 63: 1362-1366.

Washida M, Takahashi S, Ueda M, Tanaka A. Spacer mediated display of active lipase on the yeast cell surface. Appl Microbiol Biotechnol. 2001; 56: 681-686. DOI: 10.1007/s002530100718

Tokuhiro K, Ishida N, Kondo A, Takahashi H. Lactic fermentation of cellobiose by a yeast strain displaying β-glucosidase on the cell surface. Appl Microbiol Biotechnol. 2008; 79:481-488. DOI: 10.1007/s00253-008-1454-x

Nakanishi A, Bae JG, Fukai K, Tokumoto N, Kuroda K, Ogawa J, Nakatani M, Shimizu S, Ueda M. Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation. Appl Microbiol Biotechnol. 2012; 94: 939-948. DOI: 10.1007/s00253-012-3876-8

Zhang WG, Han SY, Wei DZ, Lin Y, Wang XN. Functional display of Rhizomucor miehei lipase on surface of Saccharomyces cerevisiae with higher activity and its practical properties. J Chem Technol Biotechnol. 2008; 83:329-335. DOI: 10.1002/-jctb.1814

Inaba C, Maekawa K, Morisaka H, Kuroda K, Ueda M. Efficient synthesis of enantiomeric ethyl lactate by Candida antarctica lipase B (CALB)-displaying yeasts. Appl Microbiol Biotechnol. 2009; 83: 859-864. DOI: 10.1007/s00253-009-1931-x

Ram AF, van den Ende H, Klis FM. Green fluorescent protein-cell wall fusion proteins are covalently incorporated into the cell wall of Saccharomyces cerevisiae. FEMS Microbiol Lett. 1998; 162:249-255. DOI: 10.1111/j.1574-6968.1998.tb13006.x

Liu W, Zhao H, Jia B, Xu L, Yan Y. Surface display of active lipase in Saccharomyces cerevisiae using Cwp2 as an anchor protein. Biotechnol Lett. 2010b; 32: 255-260. DOI: 10.1007/s10529-009-0138-7

Ryckaert S, Martens V, Vusser KD, Contreras R. Development of a S. cerevisiae whole cell biocatalyst for in vitro sialylation of oligosaccharides. J Biotechnol. 2005; 119:379-388. DOI:10.1016-/j.jbiotec.2005.04.010

Liu W, Jia B, Zhao H, Xu L, Yan Y. Preparation of a whole-cell biocatalyst of Aspergillus niger lipase and its practical properties. J Agric Food Chem. 2010; 58: 10426-10430. DOI: 10.1021/jf1008555

Parthasarathy R, Subramanian S, Boder ET, Discher DE. Post-translational regulation of expression and conformation of an immunoglobulin domain in yeast surface display. Biotechnol Bioeng. 2006; 93:159-168. DOI: 10.1002/bit.20684

van den Beucken T, Pieters H, Steukers M, van der Vaart M, Ladner RC, Hoogenboom HR, Hufton SE. Affinity maturation of Fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries. FEBS Lett. 2003; 546:288-294. DOI:10.1016/S0014-5793(03)00602-1

Lin Y, Tsumuraya T, Wakabayashi T, Shiraga S, Fujii I, Kondo A, Ueda M. Display of a functional hetero-oligomeric catalytic antibody on the yeast cell surface. Appl Microbiol Biotechnol. 2003; 62:226-232. DOI: 10.1007/s00253-003-1283-x

Boder ET, Bill JR, Nields AW, Marrack PC, Kappler JW. Yeast surface display of a noncovalent MHC class II heterodimer complexed with antigenic peptide. Biotechnol Bioeng. 2005; 92:485-491. DOI: 10.1002/bit.20616

Teparic R, Stuparevic I, Mrsa V. Binding assay for incorporation of alkali-extractable proteins in the Saccharomyces cerevisiae cell wall. Yeast. 2007; 24: 259-266. DOI: 10.1002/yea.1463

Abe H, Shimma Y, Jigami Y. In vitro oligosaccharide synthesis using intact yeast cells that display glycosyltransferases at the cell surface through cell-wall anchored protein Pir. Glycobiology. 2003; 13: 87- 95. DOI:10.1093/glycob/cwg014

Sumita T, Yoko-o T, Shimma Y, Jigami Y. Comparison of cell wall localization among Pir family proteins and functional dissection of the region required for cell wall binding and bud scar recruitment of Pir1p. Eukaryot Cell. 2005; 4:1872-1881. DOI:10.1128/EC.4.11.1872-1881.2005

Andres I, Gallardo O, Parascandola P, Pastor FIJ, Zueco J. Use of the cell wall protein Pir4 as a fusion partner for the expression of Bacillus sp. BP-7 Xylanase A in Saccharomyces cerevisiae. Biotechnol Bioeng. 2005; 89:690-697. DOI: 10.1002/bit.20375

Andres I, Rodriguez-Diaz J, Buesa J, Zueco J. Yeast expression of the VP8* fragment of the rotavirus spike protein and its use as immunogen in mice. Biotechnol Bioeng. 2006; 93:89-98. DOI: 10.1002/bit.20696

Shimma YI, Saito F, Oosawa F, Jigami Y. Construction of a library of human glycosyltransferases immobilized in the cell wall of Saccharomyces cerevisiae. Appl Environ Microbiol. 2006; 72: 7003-7012. DOI:10.1128/AEM.01378-06

Kapteyn JC, Montijn RC, Vink E, de la Cruz J, Llobell A, Douwes JE, Shimoi H, Lipke PN, Klis FM. Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked beta-1,3-/beta-1,6-glucan heteropolymer. Glycobiology. 1996; 6:337-345. DOI:10.1093/glycob/6.3.337

Murai T, Ueda M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Kawaguchi T, Arai M, Tanaka A. Genetic imobilization of cellulase on the cell surface of Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1997b; 48:499-503.

Han SY, Pan ZY, Huang DF, Ueda M, Wang XN, Lin Y. Highly efficient synthesis of ethyl hexanoate catalyzed by CALB-displaying Saccharomyces cerevisiae whole-cells in non-aqueous phase. J Mol Catal B: Enzym. 2009; 59:168-172. DOI:10.1016/j.molcatb.2009.02.007

Shimojyo R, Furukawa H, Fukuda H, Kondo A. Preparation of yeast strains displaying IgG binding domain ZZ and enhanced green fluorescent protein for novel antigen detection systems. J Biosci Bioeng. 2003; 96:493-495. DOI:10.1016/S1389-1723(03)70137-6

Ota M, Sakuragi H, Morisaka H, Kuroda K, Miyake H, Tamaru Y, Ueda M. Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation. Biotechnol Prog. 2013; 29: 346-351. DOI: 10.1002/btpr.1700

Kuroda K, Ueda M, Shibasaki S, Tanaka A. Cell surface-engineered yeast with ability to bind, and self-aggregate in response to, copper ion. Appl Microbiol Biotechnol. 2002; 59:259-264. DOI: 10.1007/s00253-002-1014-8

Nishitani T, Shimada M, Kuroda K, Ueda M. Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Appl Microbiol Biotechnol. 2010; 86: 641-648. DOI: 10.1007/s00253-009-2304-1

Kuroda K, Nishitani T, Ueda M. Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant. Appl Microbiol Biotechnol. 2012; 96: 153-159. DOI: 10.1007/s00253-012-4069-1

Shibasaki S, Ueda M, Ye K, Shimizu K, Kamasawa N, Osumi M, Tanaka A. Creation of cell surface-engineered yeast that display different fluorescent proteins in response to the glucose concentration. Appl Microbiol Biotechnol. 2001a; 57: 528-533. DOI: 10.1007/s002530100767

Shibasaki S, Ninomiya Y, Ueda M, Iwahashi M, Katsuragi T, Tani Y, Harashima S, Tanaka A. Intelligent yeast strains with the ability to self-monitor the concentrations of intra- and extracellular phosphate or ammonium ion by emission of fluorescence from the cell surface. Appl Microbiol Biotechnol. 2001b; 57: 702-707. DOI: 10.1007/s00253-001-0849-8

Krauland EM, Peelle BR, Wittrup KD, Belcher AM. Peptide tags for enhanced cellular and protein adhesion to single-crystalline sapphire. Biotechnol Bioeng. 2007; 97:1009-1020. DOI: 10.1002/bit.21341

Boder ET, Raeeszadeh-Sarmazdeh M, Price JV. Engineering antibodies by yeast display. Arch Biochem Biophys. 2012; 526: 99-106. DOI:10.1016/j.abb.2012.03.009

Tafakori V, Torktaz I, Doostmohammadi M, Ahmadian G. Microbial cell surface display; its medical and environmental applications. Iran J Biotech. 2012; 10: 231-239.

Teparić R, Didak B, Ščulac E, Mrša V. Genetic immobilization of RNase Rny1p at the Saccharomyces cerevisiae cell surface. J Gen Appl Microbiol. 2013; 59: 75-82.

Kondo A, Ueda M. Yeast cell-surface display - applications of molecular display. App Microbiol Biotechnol. 2004; 64:28-40. DOI: 10.1007/s00253-003-1492-3

Furukawa H, Tanino T, Fukuda H, Kondo A. Development of novel yeast cell surface display system for homo-oligomeric protein by coexpression of native and anchored subunits. Biotechnol progr. 2006; 22:994-997. DOI: 10.1021/bp0601342

Salo H, Sievi E, Suntio T, Mecklin M, Mattila P, Renkonen R, Makarow M. Co-expression of two mammalian glycosyltransferases in the yeast cell wall allows synthesis of sLex, FEMS Yeast Res. 2005; 5:341-350. DOI: 10.1016/j.femsyr.2004.11.007

Murai T, Ueda M, Kawaguchi T, Arai M, Tanaka A. Assimilation of cellooligosacharides by a cell surface-engineered yeast expressing β-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl Environ Microbiol. 1998; 64:4857-4861.

Murai T, Ueda M, Shibasaki Y, Kamasawa N, Osumi M, Imanaka T, Tanaka A. Development of an arming yeast strain for efficient utilization of strach by co-display of sequential amylolytic enzymes on the cell surface. Appl Environ Biotechnol. 1999; 51:65-70.

Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol. 2002; 68:5136-5141. DOI:10.1128/AEM.68.10.5136-5141.-2002

Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. App Environ Microbiol. 2004; 70:1207-1212. DOI:10.1128/AEM.70.2.1207-1212.-2004

Fukuda T, Kato-Murai M, Kuroda K, Ueda M, Suye S. Improvement in enzymatic desizing of starched cotton cloth using yeast codisplaying glucoamylase and cellulose-binding domain. Appl Microbiol Biotechnol. 2008; 77:1225-1232. DOI: 10.1007/-s00253-007-1263-7

Yanase S, Yamada R, Kaneko S, Noda H, Hasunuma T, Tanaka T, Ogino C, Fukuda H, Kondo A. Ethanol production from cellulosic materials using cellulase expressing yeast. Biotechnol J. 2010; 5:449-455. DOI: 10.1002/biot.200900291

Baek SH, Kim S, Lee K, Lee JK, Hahn JS. Cellulosic ethanol production by combination of cellulase-displaying yeast cells. Enzyme Microb Tech. 2012; 51: 366-372. DOI:10.1016/j.enzmictec.2012.08.005

Tsai SL, Goyal G, Chen W. Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Appl Environ Microbiol. 2010; 76: 7514-7520. DOI:10.1128/AEM.01777-10

Goyal G, Tsai SL, Madan B, DaSilva NA, Chen W. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Fact. 2011; 10: 89-96. DOI: 10.1186/1475-2859-10-89

Kim S, Baek SH, Lee K, Hahn JS. Cellulosic ethanol production using a yeast consortium displaying a

minicellulosome and β-glucosidase. Microb Cell Fact. 2013; 12:14-20. DOI: 10.1186/1475-2859-12-14

Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A. Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol. 2004; 70: 5407-5414. DOI:10.1128/AEM.70.9.5407-5414.2004

Katahira S, Mizuike A, Fukuda H, Kondo A. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol. 2006; 72:1136-1143. DOI: 10.1007/s00253-006-0402-x

Yamada R, Nakatani Y, Ogino C, Kondo A. Efficient direct ethanol production from cellulose by cellulase- and cellodextrin transporter-co-expressing Saccharo-myces cerevisiae. AMB Express. 2013; 3:34

Nakatani Y, Yamada R, Ogino C, Kondo A. Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose. Microb Cell Fact. 2013; 12:66-72. DOI: 10.1186/1475-2859-12-66

Fan LH, Zhang ZJ, Yu XY, Xue YX, Tan TW. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. PNAS. 2012; 109: 13260-13265. DOI:10.1073/pnas.1209856109

Liang Y, Si T, Ang EL, Zhao H. Engineered pentafunctional minicellulosome for simultaneous saccharification and ethanol fermentation in Saccharomyces cerevisiae. Appl Environ Microb-iol. 2014; 80: 6677-6684. DOI:10.1128/AEM.02070-14

Matano Y, Hasunuma T, Kondo A. Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresour Technol. 2012; 108: 128-133. DOI:10.1016/j.biortech.2011.12.144

Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A. Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact. 2010; 9:32 .DOI: 10.1186/1475-2859-9-32

Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A. Novel strategy for yeast construction using delta-integration and cell fusion to efficiently produce ethanol from raw starch. Appl Microbiol Biotechnol. 2010; 85:1491-1498. DOI: 10.1007/s00253-009-2198-y

Shiraga S; Kawakami M; Ishiguro M; Ueda M. Enhanced reactivity of Rhizopus oryzae lipase displayed on yeast cell surfaces in organic solvents: Potential as a whole-cell biocatalyst in organic solvents. Appl Environ Microbiol. 2005; 71: 4335-4338. DOI:10.1128/AEM.71.8.4335-4338.2005

Kato M, Fuchimoto J., Tanino T, Kondo A, Fukuda H, Ueda M. Preparation of a whole-cell biocatalyst of mutated Candida antarctica lipase B (mCALB) by a yeast molecular display system and its practical properties. Appl Microbiol Biotechnol. 2007; 75: 549-555. DOI: 10.1007/s00253-006-0835-2

Su GD, Zhang X, Lin Y. Surface display of active lipase in Pichia pastoris using Sed1 as an anchor protein. Biotechnol Lett. 2010; 32: 1131-1136. DOI: 10.1007/s10529-010-0270-4

DOI: https://doi.org/10.22037/afb.v3i1.9457


  • There are currently no refbacks.