• Logo
  • SBMUJournals

Inhibition Effect of Lactic Acid Bacteria against Food Born Pathogen, Listeria monocytogenes

Rouha Kasra-Kermanshahi, Elahe Mobarak-Qamsari




In recent years due to changes in lifestyle and eating behavior of the human populations, disease caused by contaminated food has increased significantly. Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enteric are three of the most important food borne bacterial pathogens and can lead to food borne diseases. Also today wide spread of resistance to antibiotics among bacteria occurs due to increased consumption of antibiotics. Therefore, there is a dire need for development of new types of safe antimicrobial compounds. In this field, the most extensive research and commercial practices are based on probiotic bacteria. Probiotics, specifically lactic acid bacteria, are broadly used in the food industry for fermentation. Furthermore, probiotics produce valuable antimicrobial products that results to health effects. Now, the use of probiotic for treatment of disease is thought to be an effective way to improve the gut health and an alternative for treatment by antibiotics. Probiotics contribute to food safety by inhibition of the growth of other bacteria. Lactic acid bacteria can be used as protective cultures to compete with several pathogens and undesired organisms. Since food safety has become a significant international concern, here we investigated application of lactic acid bacteria for controlling the growth of Listeria monocytogenes.


Bacteriocin, Biofilm, Food born pathogen, Lactic acid bacteria, Listeria monocytogenes


Oroojalian F, Kasra Kermanshahi R, Azizi M, Bassami M. Phytochemical composition of the essential oils from three Apiaceae species and their antibacterial effects on food-borne pathogens. Food Chem. 2010; 120(3): 765-770.

Tesfaye A. Antagonism and primary in vitro probiotic evaluation of lactic acid bacteria recovered from Ergo. J Agr Biol Sci. 2014; 7: 240-245.

Calo-Mata P, Arlindo S, Boehme K, de Miguel T, Pascoal A, Barros-Velazquez J. Current applications and future trends of lactic acid bacteria and their bacteriocins for the bio-preservation of aquatic food products. Food Bioprocess Tech. 2008; 1(1): 43-63.

Soleimani NA, Kasra Kermanshahi R, Yakhchali B, Sattari TN. Antagonistic activity of probiotic lactobacilli against Staphylococcusaureus isolated from bovine mastitis. Afr J Microbiol Res. 2010; 420: 2169-2173.

Mirhosseini MN, Kasra Kermanshahi R, Tavasoli M. The study of effect bacteriocin producing Lactococcus lactis on Listeria monocytogenes and Bacillus cereus. J Mazandaran Univ Med Sci. 2007; 17(60): 112-115.

Nasr AK, Kasra Kermanshahi R, Nahvi I. The effect of some chemical and natural preservatives with sub-mic concentrations against milk-isolated Listeria mono-cytogenes. Iran J Food Sci Tech. 2007; 17(1): 17-25.

Liu L, O’Conner P, Cotter P, Hill C, Ross R. Controlling Listeria monocytogenes in cottage cheese through heterologous production of enterocin A by Lactococcus lactis. J Appl Microbiol. 2008; 104(4): 1059-1066.

Gulmez M, Guven A. Survival of Escherichia coli O157: H7, Listeria monocytogenes 4b and Yersinia entero-colitica O3 in different yogurt and kefir combinations as prefermentation contaminant. J Appl Microbiol. 2003; 95(3): 631-636.

Erginkaya Z, Unal E, Kalkan S. Importance of microbial antagonisms about food attribution. In: Science against microbial pathogens: communicating current research and technological advances. 3rd edition. Formatex Research center. Spain. 2011; 2: 1342-1348.

Mishra C, Lambert J. Production of antimicrobial subst-ances by probiotics. Asia Pac J Clin Nut. 1996; 5: 20-24.

Choffnes ER, Relman DA, Olsen L, Hutton R, Mack A. Improving food safety through a one health approach: workshop summary: National Academies Press. USA. 2012.

Tauxe RV. Emerging foodborne pathogens. Int J Food Microbiol. 2002; 78: 31-41.

Leroy F, Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Tech. 2004; 15: 67-78.

Yang H, Hewes D, Salaheen S, Federman C, Biswas D. Effects of blackberry juice on growth inhibition of foodborne pathogens and growth promotion of Lactobacillus. Food Control. 2014; 37: 5-20.

Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM. Foodborne illness acquired in the United States unspecified agents. Emerg Infect Dis. 2011a; 17(1): 16-22.

Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis. 2011b; 17(1): 7-15.

Bemena LD, Mohamed LA, Fernandes AM, H. Lee BH. Applications of bacteriocins in food, livestock health and medicine. Int J Curr Microbiol App Sci. 2014; 3(12): 924-949.

Moretro T, Langsrud S. Listeria monocytogenes: biofilm formation and persistence in food-processing environ-ments. Biofilms. 2004; 1(2): 107-121.

Swaminathan B, Gerner-Smidt P. The epidemiology of human listeriosis. Microbes Infect. 2007; 9: 1236-1243.

Lunden J, Tolvanen R, Korkeala H. Human listeriosis outbreaks linked to dairy products in Europe. J Dairy Sci. 2004; 87: 6-12.

Warriner K, Namvar A. What is the hysteria with Listeria? Trends Food Sci Technol. 2009; 20: 245-254.

Koch J, Dworak R, Prager R, Becker B, Brockmann S, Wicke A, Wichmann-Schauer H, Hof H, Werber D, Stark K. Large listeriosis outbreak linked to cheese made from pasteurized milk, Germany, 2006-2007. Foodborne Pathog Dis. 2010; 7(12): 1581-1584.

Yde M, Naranjo M, Mattheus W, Stragier P, Pochet B, Beulens K, De Schrijver K, Van den Branden D, Laisnez V, Flipse W, Leclercq A, Lecuit M, Dierick K, Bertrand S. Usefulness of the European epidemic intelligence Infor-mation system in the management of an outbreak of listeriosis, Belgium 2011. Eurosurveillance. 2012; 17: 2-6.

Almeida G, Magalhaes R, Carneiro L, Santos I, Silva J, Ferreira V, Hogg T, Teixeira P. Foci of contamination of Listeria monocytogenes in different cheese processing plants. Int J Food Microbiol. 2013; 167: 303-309.

Maragkoudakis PA, Mountzouris KC, Psyrras D, Cremonese S, Fischer J, Cantor MD, Tsakalidou E. Functional properties of novel protective lactic acid bacteria and application in raw chicken meat against Listeria monocytogenes and Salmonella enteritidis. Int J Food Microbiol. 2009; 130(3): 219-226.

Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 2005; 3(10): 777-788.

Ennahar S, Sonomoto K, Ishizaku A. ClassIIa bacter-iocins from lactic acid bacteria: antibacterial activity and food preservation. J Biosci Bioeng. 1999; 87: 705-716.

SlozilovaI, Purkrtova S, Kosova M, Mihulova M, Svirakova E, Demnerova K. Antilisterialactivity of lactic acid bacteria against Listeria monocytogenes strains originating from different sources. Czech J Food Sci. 2014; 32: 145-151.

Dobson A, Cotter PD, Ross RP, Hill C. Bacteriocin production: a probiotic trait? Appl Environ Microbiol. 2012; 78(1): 1-6.

Klaenhammer TR. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993; 12: 39-85.

Nes IF, Diep DB, Havarstein LS, Brurberg MB, Eijsink V, Holo H. Biosynthesis of bacteriocins in lactic acidbacteria. A Van Leeuw J Microb. 1996; 70: 113-128.

Hurst A. Function of nisin and nisin-like basic proteins in the growth cycle of Streptococcus lactis. Nature. 1967; 214: 1232-1234.

Hansen JN. Antibiotics synthesized by post translational modification. Annu Rev Microbiol. 1993; 47: 535-564.

Xie L, van der Donk WA. Post-translational modific-ations during lantibiotic biosynthesis. Curr Opin Chem Biol. 2004; 8: 498-507.

Altena K, Guder A, Cramer C, Bierbaum G. Biosynthesis of the lantibioticmersacidin: organization of a type B lantibiotic gene cluster. Appl Environ Microbiol. 2000; 66: 2565-2571.

Héchard Y, Sahl HG. Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie. 2002; 84: 545-557.

Nissen-Meyer J. Rogne P, Oppegard C, Haugen HS, Kristiansen PE. Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Curr Pharm Biotechnol. 2009; 10: 19-37.

Oppegard C, Rogne P, Emanuelsen L, Kristiansen PE, Fimland G, Nissen-Meyer J. The two-peptide class II bacteriocins: structure, production, and mode of action. J Mol Microbiol Biotechnol. 2007; 13: 210-219.

Cintas LM, Casaus P, Havarstein LS, Hernandez PE, Nes IF. Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol. 1997; 63: 4321-4330.

Perez RH, Zendo T, Sonomoto K. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications Microbial Cell Factories 2014, 13(1):S3.

Alpay S, Aydin F, Kilich SS. Antimicrobial activity and characteristics of bacteriocins produced by vaginal Lactobacilli. Turk J Med Sci. 2003; 33: 7-13.

Rajaram G, Manivasagan P, Thilagavathi B, Saravan-akumar A. Purification and characterization of a bacteriocin produced by Lactobacillus lactis isolated from marine environment. Adv J Food Sci Technol. 2010; 2(2): 138-144.

Cleveland J, Montville TJ, Nes IF, Chikindas ML. Bacter-iocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol. 2001; 71: 1-20.

Ettayebi K, El Yamani J, Rossi-Hassani BD. Synergistic effects of nisin and thymol on antimicrobial activities in Listeria monocytogenes and Bacillus subtilis. FEMS Microbiol Lett. 2000; 183(1): 191-195.

O’sullivan L, Ross R, Hill C. Potential of bacterioci producing lactic acid bacteria for improvements in food safety and quality. Biochimie. 2002; 84(5): 593-604.

Campanini M, Pedrazzoni I, Barbuti S, Baldini P. Behav-iour of Listeria monocytogenes during the maturation of naturally and artificially contaminated salami: effect of lactic acid bacteria starter cultures. Int J Food Microbiol. 1993; 20: 169-175.

Nunez M, Rodriguez JL, Garcia E, Gaya P, Medina M. Inhibition of Listeria monocytogenes by enterocin during the manufacture and ripening of Manchego cheese. J Appl Microbiol. 1997; 83: 671-677.

Mahdavi M. Kasra Kermanshahi R, Jalali M. The assess-ment of disinfectants on various bacterial biofilms. Res J Univ Isfahan Sci. 2008; 31(2): 35-46.

Deegan LH, Cotter PD, Hill C, Ross P. Bacteriocins: biological tools for bio-preservation and shelf-life exten-sion. Int Dairy J. 2006; 16(9), 1058-1071.

Ferreira MA, Lund BM. The effect of nisin on Listeria monocytogenes in culture medium and long-life cottage cheese. Lett Appl Microbiol. 1996; 22: 433-438.

Rayman K, Malik N, Hurst A. Failure of nisin to inhibit outgrowth of Clostridium botulinum in a model cured

meat system. Appl Environ Microbiol. 1983; 46: 1450-1452.

de Vuyst L, Vandamme E. Nisin, a lantibiotic produced by Lactococcus lactis subsp. lactis: properties, biosynthesis and applications. In: de Vuyst L, Vandamme E. (Eds), Bacteriocins of lactic acid bacteria, microbiology, genetics and applications, Blackie Academic and Professional, London, 1994; pp. 151-221.

Nielsen JW, Dickson JS, Crouse JD. Use of a bacteriocin produced by Pediococcus acidilactici to inhibit Listeria monocytogenes associated with fresh meat. Appl Environ Microbiol. 1990; 56: 2142-2145.

Murray M, Richard JA. Comparative study of the antilisterial activity of nisin A and pediocin AcH in fresh ground pork stored aerobically at 5°C. J Food Protect. 1997; 60: 1534-1540.

Gravesen A, Ramnath M, Rechinger KB, Andersen N, Jansch L, Hechard Y, Hastings JW, KnochelS. High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiol. 2002; 148: 2361-2369.

Brotz H, Sahl H G. New insights into the mechanism of action of lantibiotics diverse biological effects by binding to the same molecular target. J Antimicrob Chemother. 2000; 46: 1-6.

Wiedemann I, Breukink E, Van Kraaij C, Kuipers OP, Bierbaum G, de Kruijff B, Sahl HG. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem. 2001; 276(3): 1772-1779.

Ukuku DO, Shelef LA. Sensitivity of six strains of Listeria monocytogenes to nisin. J Food Protect. 1997; 60: 867-869.

Liu W, Hansen JN. Some chemical and physical property-es of nisin, a small protein antibiotic produced by Lactoc-occus lactis. Appl Environ Microb. 1990; 56: 2551-2558.

Rekhif N, Atrih A, Lefebvre G. Selection and properties of spontageous mutants of Listeria monocytogenes ATCC 15313 resistant to different bacteriocins produced by lactic acid bacteria strains. Curr Microbiol 1994; 28: 237-241.

Naghmouchi K, Kheadr E, Lacroixc C, Fliss I. Class I,class IIa bacteriocin cross-resistance phenomenon in Lis-teria monocytogenes. Food Microbiol. 2007; 24: 718-727.

Davies EA, Adams M. Resistance of Listeria mono-cytogenes to the bacteriocin nisin. Int J Food Microbiol. 1994; 21(4): 341-347.

Mazzotta A, Montville TJ. Nisin induces changes in membrane fatty acid composition of Listeria mono-cytogenes nisin-resistant strains at 10°C and 30°C. J Appl Microbiol. 1997; 82: 32-38.

Ming X, Daeschel M. Nisin resistance of foodborne bacteria and the specific resistance responses of Listeria monocytogenes Scott A. J Food Prot. 1993; 56: 944-948.

Jarvis B. Resistance to nisin and production of nisin-inactivating enzymes by several Bacillus species. J Gen Microbiol. 1967; 47: 33-48.

Gravesen A, Warthoe P, Knochel S, Thirstrup K. Restr-iction fragment differential display of pediocin-resistant Listeria monocytogenes 412 mutants shows consistent overexpression of a putative beta-glucoside-specific PTS system. Microbiol. 2000; 146(6): 1381-1389.

Crandall AD, Montville TJ. Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl Environ Microbiol. 1998; 64: 231-237.

Mazzotta AS, Crandall AD, Montville TJ. Nisin resistance in Clostridium botulinum spores and vegetative cells. Appl Environ Microbiol. 1997; 63: 2654-2659.

Rasch M, Knochel S. Variations in tolerance of Listeria monocytogenes to nisin, pediocin PA-1 and bavaricin A. Lett Appl Microbiol. 1998; 27: 275-278.

Song HJ, Richard J. Antilisterial activity of three bacteriocins used at sub minimal inhibitory concen-trations and cross-resistance of the survivors. Int J Food Microbiol. 1997; 36:155-161.

Chmielewski R, Frank J. Biofilm formation and control in food processing facilities. Compr Rev Food Sci. 2003; 2(1): 22-32.

Woo J, Ahn J. Probiotic‐mediated competition, exclusion and displacement in biofilm formation by food‐borne pathogens. Lett Appl Microbiol. 2013; 56(4): 307-313.

Simoes M, Simoes LC, Vieira MJ. A review of current and emergent biofilm control strategies. LWT-Food Sci Tech. 2010; 43(4): 573-583.

Carballo J, Arajjo AB. Influence of surface character-ristics of food contact materials on bacterial attachment. International Conference of Biofilms. Spain. 2005.

Mahdavi M, Jalali M, Kasra Kermanshahi R. The effect of nisin on biofilm forming food borne bacteria using micro-titer plate method. Res Pharm Sci. 2009; 2(2): 113-118.

DOI: https://doi.org/10.22037/afb.v2i4.8894


  • There are currently no refbacks.