• Logo
  • SBMUJournals

Potential of Diverse Prokaryotic Organisms for Glycerol-based Polyhydroxyalkanoate Production

Martin Koller, Lukas Marsalek
415

Views

PDF

Abstract

The potential and performance of various Gram-negative, Gram-positive and archaeal wild type microorganisms, and bacterial mixed cultures, as well as the application of genetically engineered strains as whole-cell biocatalysts for glycerol-based polyhydroxyalkanoate production are analyzed and assessed. This encompasses the comparison of growth and polyhydroxyalkanoate accumulation kinetics, thermo-mechanical properties of isolated glycerol-based polyhydroxyalkanoate of different composition on the monomeric level, and the presentation of mathematical models developed to describe glycerol-based polyhydroxyalkanoate production processes. For all these aspects, the article provides a detailed compilation of the contemporary state of knowledge, and gives an outlook to expected future developments.

Keywords

Biopolyester Glycerol Kinetics Mathematical modeling Polyhydroxyalkanoates (PHA)

References

Haage G, Wallner E, Bona R, Schellauf F, Braunegg G. Production of poly-3-hydroxybutyrate-co-3-hydroxy-valerate with Alcaligenes latus DSM 1124 on various carbon sources. In: Chiellini E: Biorelated Polymers. Springer US, 2001: 147-155.

Tanadchangsaeng N, Yu J. Microbial synthesis of polyhydroxybutyrate from glycerol: Gluconeogenesis, molecular weight and material properties of biopolyester. Biotechnol Bioeng. 2012; 109(11): 2808-2818.

Bormann EJ, Roth M. The production of polyhydroxy-butyrate by Methylobacterium Rhodesian-um and Ralstonia eutropha in media containing glycerol and casein hydrolysates. Biotechnol Lett. 1999; 21(12): 1059-1063.

Cavalheiro JM, de Almeida MCM, Grandfils C, Da Fonseca MMR. Poly (3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem. 2009; 44(5): 509-515.

Cavalheiro JM, Raposo RS, de Almeida MCM, Cesario MT, Sevrin C, Grandfils C, da Fonseca MMR. Effect of cultivation parameters on the production of poly (3-hydroxybutyrate-co-4-hydroxy-butyrate) and poly (3-hydroxybutyrate-4-hydroxy-butyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour Technol. 2012; 111: 391-397.

Ramachandran H, Amirul AA. Yellow‐pigmented Cupriavidus sp., a novel bacterium capable of utilize-ing glycerine pitch for the sustainable production of P (3HB‐co‐4HB). J Chem Technol Biotechnol. 2013; 88(6): 1030-1038.

Ramachandran H, Amirul AA. Bioconversion of glycerine pitch into a novel yellow-pigmented P (3HB-co-4HB) copolymer: Synergistic effect of amm-onium acetate and polymer characteristics. Appl Biochem Biotech. 2014; 172(2): 891-909.

Mothes G, Schnorpfeil C, Ackermann JU. Production of PHB from crude glycerol. Eng Life Sci. 2007; 7(5): 475-479.

Teeka J, Imai T, Reungsang A, Cheng X, Yuliani E, Thiantanankul J, Poomipuk N, Yamaguchi J, Jeenan-ong A, Higuchi T, Yamamoto K, Sekine M. Charact-erization of polyhydroxyalkanoates (PHAs) biosynth-esis by isolated Novosphingobium sp. THA_AIK7 using crude glycerol. J Ind Microbiol Biotech. 2012; 39(5): 749-758.

Ibrahim MH, Steinbüchel A. Poly (3-hydroxybutyrate) production from glycerol by Zobellella denitrificans MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction. Appl Environ Microb. 2009; 75(19): 6222-6231.

Cesario MT, Raposo RS, de Almeida MCM, van Keulen F, Ferreira BS, da Fonseca MMR. Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnol. 2014; 31: 104-113.

Zhu C, Nomura CT, Perrotta JA, Stipanovic AJ, Nakas JP. Production and characterization of poly‐3‐hydroxybutyrate from biodiesel‐glycerol by Burkhol-

deria cepacia ATCC 17759. Biotechnol Prog. 2010; 26(2): 424-430.

Kawata Y, Aiba SI. Poly(3-hydroxybutyrate) produc-tion by isolated Halomonas sp. KM-1 using waste glycerol. Biosci Biotech Biochem. 2010; 74(1): 175-177.

Van-Thuoc D, Huu-Phong T, Minh-Khuong D, Hatti-Kaul, R. Poly (3-hydroxybutyrate-co-3-hydroxy-valerate) production by a moderate halophile Yangia sp. ND199 using glycerol as a carbon source. Appl Biochem Biotech. 2015; 175: 3120-3132.

Miura T, Ishii D, Nakaoki T. Production of Poly (3-hydroxyalkanoate)s by Pseudomonas putida cultivated in a glycerol/nonanoic acid-containing medium. J Polym Environ. 2013; 21(3): 760-765.

Poblete-Castro I, Binger D, Oehlert R, Rohde M. Comparison of mcl-Poly (3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: Citrate accumulates at high titer under PHA-producing conditions. BMC Biotechnol. 2014; 14(1): 962-972.

Pappalardo F, Fragala M, Mineo PG, Damigella A, Catara AF, Palmeri R, Rescifina A. Production of filmable medium-chain-length polyhydroxyalkanoates produced from glycerol by Pseudomonas mediterr-anei. Int J Biol Macromol. 2014; 65: 89-96.

Taran M, Azizi E, Taran S, Asadi N. Archaeal poly 3-hydroxybutyrate polymer production from glycerol: optimization by Taguchi methodology. J Polym Environ. 2011; 19(3): 750-754.

Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P. Production of polyhydroxyalkanoates from agricult-ural waste and surplus materials. Biomacromolecules. 2005; 6(2): 561-565.

Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G. Archaeal production of polyhydroxyalkanoate (PHA) co and terpolyesters from biodi-esel industry-derived by-products. Archaea. 2013; 2013: 1-10.

Deepthi SK, Binod P, Sindhu R, Pandey A. Media engineering for production of poly-β-hydroxybutyrate by Bacillus firmus NII 0830. J Sci Ind Res. 2011; 70(11): 968-975.

Sindhu R, Ammu B, Binod P, Deepthi SK, Ramachan-dran KB, Soccol CR, Pandey A. Production and characterization of poly-3-hydroxybutyrate from crude glycerol by Bacillus sphaericus NII 0838 and improve-ing its thermal properties by blending with other polymers. Braz Arch Biol Techn. 2011; 54(4): 783-794.

Ciesielski S, Pokoj T, Klimiuk E. Cultivation dependent and independent characterization of microbial commun-ity producing polyhydroxyalkan-oates from raw glycerol. J Microbiol Biotechnol. 2010; 20(5): 853-861.

Wattanaphon HT, Ciesielski S, Pisutpaisal N. Determ-ining microbial dynamics of polyhydroxyalkanoates-producing consortium in waste glycerol using RISA technique. Science 2011; 19: 181-185.

Renner G, Schellauf F, Braunegg G, Rodriguez F. Selective enrichment of bacteria accumulating polyhy-droxyalkanoates in multistage continuous culture. Food Technol Biotech. 1998; 36(3): 203-208.

Moralejo-Gárate H, Mar’atusalihat E, Kleerebezem R, van Loosdrecht MC. Microbial community engineer-ing for biopolymer production from glycerol. Appl Microbiol Biotechnol. 2011; 92(3):631-639.

Moralejo‐Gárate H, Palmeiro‐Sánchez T, Kleere-bezem R, Mosquera‐Corral A, Campos JL, van Loos-drecht M. Influenceof the cycle length on the product-ion of PHA and polyglucose from glycerol by bacter-ial enrichments in sequencing batch reactors. Biotechnol Bioeng. 2013; 110(12): 3148-3155.

Moita R, Freches A, Lemos PC. Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures. Water Res. 2014; 58: 9-20.

Ashby RD, Solaiman DK, Foglia TA. Synthesis of short-/medium-chain-length poly (hydroxyl alkanoate) blends by mixed culture fermentation of glycerol. Biomacromolecules. 2005; 6(4): 2106-2112.

Mahishi LH, Tripathi G, Rawal SK. Poly(3-hydroxybutyrate) (PHB) synthesis by recombinant Escherichia coli harbouring Streptomyces aureofaciens PHB biosynthesis genes: effect of various carbon and nitrogen sources. Microbiol Res. 2003; 158(1): 19-27.

Phithakrotchanakoon C, Champreda V, Aiba S, Pootan-akit K, Tanapongpipat S. Engineered Escherichia coli for short chain length, medium chain length polyhydroxyalkanoate copolymer biosynthesis from glycerol and dodecanoate. Biosci Biotech Bioch. 2013; 77(6): 1262-1268.

Phithakrotchanakoon C, Champreda V, Aiba S, Poota-nakit K, Tanapongpipat S. Production of polyhydrox-yalkanoates from crude glycerol using recombinant Escherichia coli. J Polym Environ. 2015; 23: 38-44.

Nikel PI, Pettinari MJ, Galvagno MA, Mendez BS. Poly (3-hydroxybutyrate) synthesis by recombinant Escherichia coli arcA mutants in microaerobiosis. Appl Environ Microb. 2006; 72(4): 2614-2620.

de Almeida A, Giordano AM, Nikel PI, Pettinari MJ. Effects of aeration on the synthesis of poly(3-hydroxybutyrate) from glycerol and glucose in recombinant Escherichia coli. Appl Environ Microb. 2010; 76(6): 2036-2040.

de Almeida A, Nikel PI, Giordano AM, Pettinari MJ. Effects of granule-associated protein PhaP on glycerol-dependent growth and polymer production in poly(3-hydroxybutyrate)-producing Escherichia coli. Appl Environ Microb. 2007; 73(24): 7912-7916.

Andreessen B, Lange AB, Robenek H, Steinbuchel A. Conversion of glycerol to poly(3-hydroxypropionate) in recombinant Escherichia coli. Appl Environ Microb. 2010; 76(2): 622-626.

Sujatha K, Shenbagarathai R. A study on medium chain length-polyhydroxyalkanoate accumulation in

Escherichia coli harbouring phaC1 gene of indigenous Pseudomonas sp. LDC-5. Lett Appl Microbiol. 2006; 43(6): 607-614.

Orita I, Iwazawa R, Nakamura S, Fukui T. Identification of mutation points in Cupriavidus necator NCIMB 11599 and genetic reconstitution of glucose-utilization ability in wild strain H16 for polyhydroxyalkanoate production. J Biosci Bioeng. 2012; 113(1): 63-69.

Fukui T, Mukoyama M, Orita I, Nakamura S. Enhancement of glycerol utilization ability of Ralstonia eutropha H16 for production of polyhyd-roxyalkanoates. Appl Microbiol Biotechnol. 2014; 98(17): 7559-7568.

Escapa IF, del Cerro C, Garcia JL, Prieto MA. The role of GlpR repressor in Pseudomonas putida KT2440 growth and PHA production from glycerol. Environ Microbiol. 2013; 15(1): 93-110.

Feng X, Xian M, Liu W, Xu C, Zhang H, Zhao G. Biosynthesis of poly (3-hydroxypropionate) from glycerol using engineered Klebsiella pneumoniae strain without vitamin B12. Bioengineered. 2015; 6(2): 77-81.

Spoljaric IV, Lopar M, Koller M, Muhr A, Salerno A, Reiterer A, Malli K, Angerer H, Strohmeier K, Schober S, Mittelbach M, Horvat P. Mathematical modeling of poly [(R)-3-hydroxyalkanoate] synthesis by Cupriavidus necator DSM 545 on substrates stemming from biodiesel production. Bioresour Technol. 2013; 133: 482-494.

Spoljaric IV, Lopar M, Koller M, Muhr A, Salerno A, Reiterer A, Horvat P. In silico optimization and low structured kinetic model of poly [(R)-3-hydroxy-butyrate] synthesis by Cupriavidus necator DSM 545 by fed-batch cultivation on glycerol. J Biotechnol. 2013; 168(4): 625-635.

Lopar M, Spoljaric IV, Cepanec N, Koller M, Brau-negg G, Horvat P. Study of metabolic network of Cupriavidus necator DSM 545 growing on glycerol by applying elementary flux modes and yield space analysis. J Ind Microbiol Biotech. 2014; 41(6): 913-930.

Zafar M, Kumar S, Kumar S, Agrawal J, Dhiman AK. Valorization of glycerol into polyhydroxyalkanoates by sludge isolated Bacillus sp. RER002: Experimental and modeling studies. Chem Prod Process Model. 2014; 9(2): 117-131.

Braunegg G, Genser K, Bona R, Haage G, Schellauf F, Winkler E. Production of PHAs from agricultural waste material. Macromol Symp. 1999; 144: 375-383.

Rodriguez-Contreras A, Koller M, Miranda-de Sousa Dias M, Calafell-Monfort M, Braunegg G, Marqués-Calvo MS. Influence of glycerol on poly (3hydroxyb-utyrate) production by Cupriavidus necator and Bur-kholderia sacchari. Biochem Eng J. 2015; 94: 50-57.




DOI: https://doi.org/10.22037/afb.v2i3.8271

Refbacks

  • There are currently no refbacks.