• Logo
  • SBMUJournals

The Potential Application of Cupriavidus necator as Polyhydroxyalkanoates Producer and Single Cell Protein: A Review on Scientific, Cultural and Religious Perspectives

Jiun Yee Chee, Manoj Lakshmanan, Iffa Farahin Jeepery, Nabila Husna Mohamad Hairudin, Kumar Sudesh
519

Views

PDF

Abstract

Background and objective: Polyhydroxyalkanoates are environmentally friendly bioplastic compounds produced via the microbial route that offer an alternative to synthetic plastics due to their comparable durability and thermal stability. However, the high production cost as a result of carbon feedstock for microorganisms and the downstream recovery process narrow the usage of polyhydroxyalkanoates in various fields. Conversion of by products from the food and agricultural industries such as waste cooking oil, glycerol, palm sludge oil, oil palm trunk sap and soya waste into polyhydroxyalkanoates is an attractive approach that can minimize and/or add value to waste.

Results and conclusion: Recently, there has been a lot of interest in exploring not just polyhydroxyalkanoates as valued-added products, but also PHA-producing bacteria as a nutritional food or feed source. It has been previously reported that the PHA-producing bacterium, Cupriavidus necator, can be utilized as a single cell protein (SCP) in animal feed owing to its high protein content. The mealworm beetle (Tenebrio molitor) has also been used as the model insect to evaluate the efficacy of Cupriavidus necator cells as a source of protein and to recover polyhydroxyalkanoate granules at the same time. The European Union has imposed strict regulations on the type of feedstock that can be used to ensure that the food chain is safe. In addition, there are religious and cultural concerns. This review will focus on the nutritional value of Cupriavidus necator as single cell protein and its safety as animal feed. The impact of using by-products from the agriculture and food industries as carbon feedstocks to produce single cell protein will be discussed, alongside societal acceptance of this practice.

Conflict of interest: The authors declare no conflict of interest.


Keywords

▪ Animal feed ▪ Cupriavidus necator ▪ Mealworms ▪ Polyhydroxyalkanoate ▪ Single cell protein ▪ Social acceptance

References

REFERENCES

Chee JY, Yoga SS, Lau NS, Ling SC, Abed RMM, Sudesh K Bacterially produced polyhydroxyalkanoate (PHA): Converting renewable resources into bioplastics. In: Vilas AM. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Formatex Research Center (Spain), 2010: 1935-1404.

Rochman CM, Browne MA, Halpern BS, Hentschel BT, Hoh E, Karapanagioti HK, Rios-Mendoza LM, Takada H, Teh S, Thompson RC. Classify plastic waste as hazardous. Nature. 2013; 494: 169-171. doi:10.1038/494169a

Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Björn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R. Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc Lond B Biol Sci. 2009; 364(1526): 2027-2045.

Lithner D, Larsson Å, Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ. 2011; 409(18): 3309-3324. doi:https://doi.org/10.1016/j.scitotenv.2011.04.038

Albuquerque MGE, Eiroa M, Torres C, Nunes BR, Reis MAM. Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J Biotechnol. 2007; 130(4): 411-421. doi:10.1016/j.jbiotec.2007.05.011

Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci. 2000; 25(10): 1503-1555. doi:http://dx.doi.org/10.1016/S0079-6700(00)00035-6

Byrom D. Polymer synthesis by microorganisms: Technology and economics. Trends Biotechnol. 1987; 5(9): 246-250. doi:https://doi.org/10.1016/0167-7799(87)90100-4

Madison LL, Huisman GW. Metabolic engineering of poly (3-hydroxyalkanoates): From DNA to plastic. Microbiol Mol Biol Rev. 1999; 63(1): 21-53.

Steinbüchel A, Valentin HE. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett. 1995; 128(3): 219-228. doi:http://dx.doi.org/10.1016/0378-1097(95)00125-O

Hori K, Marsudi S, Unno H. Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Biotechnol Bioeng. 2002; 78(6): 699-707.

Marsudi S, Unno H, Hori K. Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2008; 78(6): 955-961.

Hori K, Ichinohe R, Unno H, Marsudi S. Simultaneous syntheses of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa IFO3924 at various temperatures and from various fatty acids. Biochem Eng J. 2011; 53(2): 196-202.

Kourmentza C, Costa J, Azevedo Z, Servin C, Grandfils C, De Freitas V, Reis MAM. Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Bioresour Technol. 2018; 247: 829-837. doi:10.1016/j.biortech.2017.09.138

Gómez Cardozo JR, Mora Martínez AL, Yepes Pérez M, Correa Londoño GA. Production and characterization of polyhydroxyalkanoates and native microorganisms synthesized from fatty waste. Int J Polym Sci. 2016: doi:10.1155/2016/6541718

Montenegro R, Magnitskiy S, Henao T, Martha C. Effect of nitrogen and potassium fertilization on the production and quality of oil in Jatropha curcas L. under the dry and warm climate conditions of Colombia. Agron Colomb. 2014; 32(2): 255-265.

Sanli H, Canakci M, Alptekin E. Characterization of waste frying oils obtained from different facilities. Bioenergy Technol. 2011; (057): 479-485.

Titz M, Kettl KH, Shahzad K, Koller M, Schnitzer H, Narodoslawsky M. Process optimization for efficient biomediated PHA production from animal-based waste streams. Clean Technol Envir. 2012; 14(3): 495-503.

Burniol-Figols A, Varrone C, Daugaard AE, Le SB, Skiadas IV, Gavala HN. Polyhydroxyalkanoates (PHA) production from fermented crude glycerol: Study on the conversion of 1, 3-propanediol to PHA in mixed microbial consortia. Water Res. 2018; 128: 255-266.

Song JH, Jeon CO, Choi MH, Yoon SC, Park W. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. J Microbiol Biotechnol. 2008; 18(18): 1408-1415.

Koller M, Braunegg G. Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. EuroBiotech J. 2018; 2(2): 89-103. doi:10.2478/ebtj-2018-0013

Obruca S, Benesova P, Marsalek L, Marova I. Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q. 2015; 29(2): 135-144.

Ahn WS, Park SJ, Lee SY. Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol. 2000; 66: 3624-3627.

Kucera D, Benesova P, Ladicky P, Pekar M, Sedlacek P, Obruca S. Production of polyhydroxyalkanoates using hydrolyzates of spruce sawdust: Comparison of hydrolyzates detoxification by application of overliming, active carbon, and lignite. Bioengineering. 2017; 4(2): 53.

Silva LF, Taciro MK, Ramos MM, Carter JM, Pradella JGC, Gomez JGC. Poly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate. J Ind Microbiol Biot. 2004; 31(6): 245-254.

Hájek M, Skopal F, Čapek L, Černoch M, Kutálek P. Ethanolysis of rapeseed oil by KOH as homogeneous and as heterogeneous catalyst supported on alumina and CaO. Energy 2012; 48(1): 392-397.

Xiao Y, Xiao G, Varma AA. A universal procedure for crude glycerol purification from different feedstocks in biodiesel production: experimental and simulation study. Ind Eng Chem Res. 2013; 52(39): 14291-14296.

Kunasundari B, Murugaiyah V, Kaur G, Maurer FHJ, Sudesh K. Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously. PLoS ONE. 2013; 8(10): e78528. doi:10.1371/journal.pone.0078528

Murugan P, Han L, Gan CY, Maurer FHJ, Sudesh K. A new biological recovery approach for PHA using mealworm, Tenebrio molitor. J Biotechnol. 2016; 239: 98-105. doi:10.1016/j.jbiotec.2016.10.012

Ong SY, Zainab LI, Pyary S, Sudesh K. A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals. Appl Microbiol Biotechnol. 2018; 102: 2117-2127.

Kunasundari B, Arza CR, Maurer FHJ, Murugaiyah V, Kaur G, Sudesh K. Biological recovery and properties of poly(3-hydroxybutyrate) from Cupriavidus necator H16. Sep Purif Technol. 2017; 172: 1-6. doi:10.1016/j.seppur.2016.07.043

Wu M, Singh AK. Single-cell protein analysis. Curr Opin Biotechnol. 2012; 23(1): 83-88. doi:10.1016/j.copbio.2011.11.023

Israelidis CJ Nutrition – single cell protein, twenty years later. In: Proceedings from First Biointernational Conference, 2003.

Raberg M, Volodina E, Lin K, Steinbüchel A. Ralstonia eutropha H16 in progress: Applications beside PHAs and establishment as production platform by advanced genetic tools. Crit Rev Biotechnol. 2017; 38(4): 494-510. doi:10.1080/07388551.2017.1369933

Ware SA. Single cell protein and other food recovery technologies from waste. Municipal Environmental Research Laboratory. Office of R & D US EPA Cincinnati, Ohio 45268. 1977.

Schlegel H, Lafferty R. Novel energy and carbon sources A. The production of biomass from hydrogen and carbon dioxide. In: Ghose T, Fiechter A. Advances in Biochemical Engineering. New York: Springer Verlag. 1971: 143-168.

Voudouris P, Tenorio AT, Lesschen JP, Mulder WJ, Kyriakopoulou K, Sanders JPM, van der Goot AJ, Bruins ME. Sustainable protein technology: An evaluation on the STW Protein programme and an outlook for the future. Wageningen University Research Report 1786, 2017; doi:10.18174/429443

Nasseri AT, Rasoul-Amini S, Morow MH, Ghasemi Y. Single cell protein: Production and Process. Am J Food Technol. 2011; 6(2): 103-116. doi:10.3923/ajft.2011.103.116

Mølek AM, Poulsen M, Christensen HR, Lauridsen ST, Madsen C. Immunotoxicity of nucleic acid reduced BioProtein-a bacterial derived single cell protein-in Wistar rats. Toxicology. 2002; 174: 183-200. doi:10.1016/S0300-483X(02)00079-3

Christensen HR, Larsen LC, Frøkiær H. The oral immunogenicity of BioProtein, a bacterial single-cell protein, is affected by its particulate nature. 2003; 90: 169-178. doi:10.1079/BJN2003863

Lenz O, Schwartz E, Dernedde J, Eitinger M, Friedrich B. The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation. J Bacteriol. 1994; 176: 4395-4393. doi:10.1128/jb.176.14.4385-4393

Kharatyan SG. Microbes as food for humans. Ann Rev Microbiol. 1978; 32: 301-327. doi:10.1146/annurev.mi.32.100178.001505

Ansari F. (2012) Single cell protein. Slide Share. https://www.slideshare.net/FIRDOUS88/single-cell-protein.

Chavan S. (2011) Slide Share. https://www.slideshare.net/ShraddhaChavan1/scp?qid=899d5179-5ed1-406f-a6ce-7d53c00c51d0&v=&b=&from_search=3.

Clifford AJ, Story DL. Levels of purines in foods and their metabolic effects in rats. J Nutr. 1976; 106: 435-442.

Jean C, Rome S, Mathé V, Huneau JF, Aattouri N, Fromentin G, Achagiotis CL, Tomé D. Metabolic evidence for adaptation to a high protein diet in rats. J Nutr. 2001; 131: 91-98. doi:10.1093/jn/131.1.91

Bovera F, Piccolo G, Gasco L, Marono S, Loponte R, Vassalotti G, Mastellone V, Lombardi P, Attia YA, Nizza A. Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets. Br Poult Sci. 2015; 56(5): 569-575. doi:10.1080/00071668.2015.1080815

van Huis A, van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P Edible insects: Future prospects for food and feed security. vol 171. Food and Agriculture Organization of the United Nations, 2013.

Vidanarachchi J, Kurukulasuriya MS, Kim SK. Chitin, chitosan and their oligosachcharides in food industry. In: Kim SK. Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological Activities and Applications. CRC Press, New York, USA, 2010: 543-560. doi:10.1201/EBK1439816035-c38

Belluco S, Losasso C, Maggioletti M, Alonzi CC, Paoletti MG, Ricci A. Edible insects in a food safety and nutritional perspective: A critical review. Compr Rev Food Sci Food Saf. 2013; 12(3): 296-313.

DeFoliart GR. Insects as human food: Gene DeFoliart discusses some nutritional and economic aspects. Crop Prot. 1992; 11(5): 395-399.

Klunder HC, Wolkers-Rooijackers J, Korpela JM, Nout MJR. Microbiological aspects of processing and storage of edible insects. Food Control. 2012; 26(2): 628-631.

Megido RC, Desmedt S, Blecker C, Béra F, Haubruge É, Alabi T, Francis F. Microbiological load of edible insects found in Belgium. Insects. 2017; 8(1): 12.

Verhoeckx KC, Van Broekhoven S, Gaspari M, de Hartog-Jager SC, De Jong G, Wichers H, Van Hoffen E, Houben G, Knulst AC. House dust mite (Derp 10) and crustacean allergic patients may be at risk when consuming food containing mealworm proteins. Clin Transl Allergy. 2013; 3(S3): P48.

Van Broekhoven S, Bastiaan-Net S, de Jong NW, Wichers HJ. Influence of processing and in vitro digestion on the allergic cross-reactivity of three mealworm species. Food Chem. 2016; 196: 1075-1083.

Dobermann D, Swift JA, Field LM. Opportunities and hurdles of edible insects for food and feed. Nutr Bull. 2017; 42(4): 293-308.

Testa M, Stillo M, Maffei G, Andriolo V, Gardois P, Zotti CM. Ugly but tasty: A systematic review of possible human and animal health risks related to entomophagy. Crit Rev Food Sci Nutr. 2017; 57(17): 3747-3759.

Oonincx DGAB, van Itterbeeck J, Heetkamp MJW, van Den BH, van Loon JJA, van Huis A. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PloS ONE. 2010; 5(12): e14445.

Verbeke W, Spranghers T, De Clercq P, De Smet S, Sas B, Eeckhout M. Insects in animal feed: Acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. Anim Feed Sci Technol. 2015; 204: 72-87.

Hartmann C, Siegrist M. Insects as food: Perception and acceptance. Findings from current research. Ernahrungs Umschau. 2017; 64(3): 44-50.

Verbeke W. Profiling consumers who are ready to adopt insects as a meat substitute in a Western society. Food Qual Prefer. 2015; 39: 147-155.

Gere A, Székely G, Kovács S, Kókai Z, Sipos L. Readiness to adopt insects in Hungary: A case study. Food Qual Prefer. 2017; 59: 81-86.

Tan HSG, Verbaan YT, Stieger M. How will better products improve the sensory-liking and willingness to buy insect-based foods? Food Res Int. 2017; 92: 95-105.

PROteINSECT. PROTEINSECT: Media Centre. PROTEINSECT: Media Centre. 2016; www.proteinsect.eu/index.php?id=38

Friederich U, Volland W. Breeding Food Animals: Live food for vivarium animals. Krieger Publishing Company, 2004.

Oonincx DGAB, De Boer IJM. Environmental impact of the production of mealworms as a protein source for humans–a life cycle assessment. PloS One. 2012; 7(12): e51145.

UN (2012) World urbanization prospects, the 2011 revision New York, USA

Amar Z. The eating of locusts in Jewish tradition after the Talmudic period. Torah U Madda J. 2002; 11: 186-202.

Kinyuru JN, Kenji GM, Muhoho SN, Ayieko M. Nutritional potential of longhorn grasshopper (Ruspolia differens) consumed in Siaya district, Kenya. J Agric Sci Technol. 2011.

Jongema Y. List of edible insects of the world. 2017; www.wur.nl/en/Expertise-Services/Chairgroups/

Michael L, Conrad H. Why Muslims are the world's fastest-growing religious group 2017 http://www.pewresearch.org/fact-tank/2017/04/06/why-muslims-are-the-worlds-fastest-growing-religious-group/

Rushd I The distinguished jurist's primer, vol 1. ISBS, 2000.

Al-Asqalani AIH. Bulugh Al-Maram: Attainment of the Objective According to the Evidence of the Ordinances: With Brief Notes from the Book Subul-us-Salam. Dar-us-Salam, 1996.

Srivastava SK, Babu N, Pandey H. Traditional insect bioprospecting–As human food and medicine. Indian J Tradit Know. 2009; 8(4): 485-494.




DOI: https://doi.org/10.22037/afb.v6i1.22234

Refbacks

  • There are currently no refbacks.