• Logo
  • SBMUJournals

Paracoccus sp. Strain LL1 as a Single Cell Factory for the Conversion of Waste Cooking Oil to Polyhydroxyalkanoates and Carotenoids

Prasun Kumar, Beom Soo Kim
330

Views

PDF

Abstract

Background and objective: Polyhydroxyalkanoates have drawn significant attention as alternative to petroleum-based plastics; however, their industrial production is still hindered by the costly feed materials. Co-generation of other high-value products in addition to polyhydroxyalkanoate by the same microbial strains can be helpful in alleviating overall production cost up to 50%. This study for the first time demonstrates that polyhydroxyalkanoate and astaxanthin-rich carotenoids can be co-produced by Paracoccus sp. LL1 using waste cooking oil as substrate.

Material and methods: The halophilic strain of Paracoccus sp. LL1 was grown under batch fermentation using mineral media supplemented with 1% (v v-1) waste cooking oil. Different surfactants were used to improve substrate utilization. Polyhydroxyalkanoate obtained after the fermentation was characterized by fluorescent microscopy, gas chromatography, and Fourier Transform Infra-Red spectroscopy.

Results and conclusion: Oil as a substrate, led to 1.0 g l-1 poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with concomitant production of 0.89 mg l-1 of carotenoids after 96 h. An enhancement of 2.7-folds in total cell dry mass was achieved when 0.1% (v v-1) Tween-80 was used as surfactant for ease in oil metabolism. Paracoccus sp. LL1 has the potential to serve as a single cell factory for bioconversion of cheap substrates into high value products.

Conflict of interest: The authors declare no conflict of interest.


Keywords

▪ Astaxanthin ▪ Co-production ▪ Polyhydroxyalkanoates ▪ Vegetable oil ▪ Waste cooking

References

Kumar P, Patel SKS, Lee J-K, Kalia VC. Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv. 2013; 31(8): 1543-1561. doi: 10.1016/j.biotechadv.2013.08.007

Poltronieri P, Kumar P. Polyhydroxyalkanoates (PHAs) in Industrial Applications. In: Martinez LMT, Kharissova OV, Kharisov BI, editors. Handbook of Ecomaterials. Cham: Springer International Publishing; 2017: pp. 1-30. doi: 10.1007/978-3-319-48281-1_70-1

Kumar P, Singh M, Mehariya S, Patel SKS, Lee J-K, Kalia VC. Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol. 2014; 54(2): 151-157. doi: 10.1007/s12088-014-0457-9

Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC. Biotechnology in Aid of Biodiesel Industry Effluent (glycerol): Biofuels and Bioplastics. In: Kalia VC, editor. Microbial Factories: Biofuels, Waste Treatment: Volume 1. New Delhi: Springer India; 2015: pp. 105-119. doi: 10.1007/978-81-322-2598-0_7

Ray S, Kalia VC. Co-metabolism of substrates by Bacillus thuringiensis regulates polyhydroxyalkanoate co-polymer composition. Bioresour Technol. 2017; 224: 743-747. doi: 10.1016/j.biortech.2016.11.089

Kaur G, Roy I. Strategies for large-scale production of polyhydroxyalkanoates. Chem Biochem Eng Q. 2015; 29(2): 157-272. doi: 10.15255/CABEQ.2014.2255

Kourmentza C, Placido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MA. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering. 2017; 4(2): 55. doi: 10.3390/bioengineering4020055

Koller M, Marsalek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol. 2017; 37: 24-38. doi: 10.1016/j.nbt.2016.05.001

Bhatia SK, Kim J-H, Kim M-S, Kim J, Hong JW, Hong YG, Kim H-J, Jeon J-M, Kim S-H, Ahn J, Lee H, Yang Y-H, Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha. Bioprocess Biosyst Eng. 2018; 41(2): 229-235. doi: 10.1007/s00449-017-1861-4

Kumar P, Jun H-B, Kim BS. Co-production of polyhydroxyalkanoates and carotenoids through bioconversion of glycerol by Paracoccus sp. strain LL1. Int J Biol Macromol. 2018; 107: 2552-2558. doi: 10.1016/j.ijbiomac.2017.10.147

Koller M, Muhr A, Braunegg G. Microalgae as versatile cellular factories for valued products. Algal Res. 2014; 6: 52-63. doi: 10.1016/j.algal.2014.09.002

Kumar P, Chandrasekhar K, Kumari A, Sathiyamoorthi E, Kim BS. Electro-fermentation in aid of bioenergy and biopolymers. Energies 2018; 11(2): 343. doi: 10.3390/en11020343

Singh LK, Dhasmana N, Sajid A, Kumar P, Bhaduri A, Bharadwaj M, et al. clpC operon regulates cell architecture and sporulation in Bacillus anthracis. Environ Microbiol. 2015;17 (3):855-865. doi: 10.1111/1462-2920.12548

Costa SGVAO, Lepine F, Milot S, Deziel E, Nitschke M, Contiero J. Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. J Ind Microbiol Biotechnol. 2009; 36(8): 1063-1072. doi: 10.1007/s10295-009-0590-3

Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC. Biodiesel industry waste: A potential source of bioenergy and biopolymers. Indian J Microbiol. 2015; 55(1): 1-7. doi: 10.1007/s12088-014-0509-1

Yousuf RG, Winterburn JB. Waste date seed oil extract as an alternative feedstock for Poly (3-hydroxybutyrate) synthesis. Biochem Eng J. 2017; 127: 68-76. doi: 10.1016/j.bej.2017.08.007

Kourmentza C, Costa J, Azevedo Z, Servin C, Grandfils C, De Freitas V, Ries MAM. Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Bioresour Technol. 2018; 247: 829-837. doi: 10.1016/j.biortech.2017.09.138

Marsudi S, Unno H, Hori K. Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2008; 78(6): 955-961. doi: 10.1007/s00253-008-1388-3

Cui Y-W, Gong X-Y, Shi Y-P, Wang Z. Salinity effect on production of PHA and EPS by Haloferax mediterranei. RSC

Adv. 2017; 7(84): 53587-53595. doi: 10.1039/C7RA09652F 20. Obruca S, Petrik S, Benesova P, Svoboda Z, Eremka L, Marova I. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl Microbiol Biotechnol. 2014; 98(13): 5883-5890. doi: 10.1007/s00253-014-5653-3

Sawant SS, Salunke BK, Kim BS. Degradation of corn stover by fungal cellulase cocktail for production of polyhydroxyalkanoates by moderate halophile Paracoccus sp. LL1. Bioresour Technol. 2015; 194: 247-255. doi: 10.1016/j.biortech.2015.07.019

Kumar P, Ray S, Patel SKS, Lee J-K, Kalia VC. Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol. 2015; 78: 9-16. doi: 10.1016/j.ijbiomac.2015.03.046

Kumar P, Ray S, Kalia VC. Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes. Bioresour Technol. 2016; 200: 413-419. doi: 10.1016/j.biortech.2015.10.045

Song JH, Jeon CO, Choi MH, Yoon SC, Park W. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. J Microbiol Biotechnol. 2008; 18(18): 1408-1415

Vastano M, Casillo A, Corsaro MM, Sannia G, Pezzella C. Production of medium chain length polyhydroxyalkanoates from waste oils by recombinant Escherichia coli. Eng Life Sci. 2015; 15(7): 700-709. doi: 10.1002/elsc.201500022

Verlinden RA, Hill DJ, Kenward MA, Williams CD, Piotrowska-Seget Z, Radecka IK. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express. 2011; 1(1): 11. doi: 10.1186/2191-0855-1-11

Ciesielski S, Możejko J, Pisutpaisal N. Plant oils as promising substrates for polyhydroxyalkanoates production. J Clean Prod. 2015; 106: 408-421. doi: 10.1016/j.jclepro.2014.09.040

Mozejko J, Przybylek G, Ciesielski S. Waste rapeseed oil as a substrate for medium chain length polyhydroxyalkanoates

production. Eur J Lipid Sci Technol. 2011; 113(12): 1550-1557. doi: 10.1002/ejlt.201100148

Benesova P, Kucera D, Marova I, Obruca S. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils. Lett Appl Microbiol. 2017; 65(2): 182-188. doi: 10.1111/lam.12762

Campanari S, Augelletti F, Rossetti S, Sciubba F, Villano M, Majone M. Enhancing a multi-stage process for olive oil mill wastewater valorization towards polyhydroxyalkanoates and biogas production. Chem Eng J. 2017; 317: 280-289. doi: 10.1016/j.cej.2017.02.094

Cruz MV, Sarraguca MC, Freitas F, Lopes JA, Reis MAM. Online monitoring of P(3HB) produced from used cooking oil with near-infrared spectroscopy. J Biotechnol. 2015; 194:1-9. doi: 10.1016/j.jbiotec.2014.11.022

Mozejko J, Ciesielski S. Saponified waste palm oil as an attractive renewable resource for mcl-polyhydroxyalkanoate synthesis. J Biosci Bioeng. 2013; 116(4): 485-492. doi: 10.1016/j.jbiosc.2013.04.014

Obruca S, Benesova P, Oborna J, Marova I. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly (3-hydroxybutyrate) production from oils by Cupriavidus necator. Biotechnol Lett. 2014; 36(4): 775-781. doi: 10.1007/s10529-013-1407-z

Follonier S, Goyder MS, Silvestri A-C, Crelier S, Kalman F, Riesen R, Zinn M. Fruit pomace and waste frying oil as sustainable resources for the bioproduction of medium-chain length polyhydroxyalkanoates. Int J Biol Macromol. 2014; 71: 42-52. doi: 10.1016/j.ijbiomac.2014.05.061

Nielsen C, Rahman A, Rehman AU, Walsh MK, Miller CD. Food waste conversion to microbial polyhydroxyalkanoates. Microb Biotechnol. 2017; 10(6): 1338-1352. doi: 10.1111/1751-7915.12776




DOI: https://doi.org/10.22037/afb.v6i1.21628

Refbacks

  • There are currently no refbacks.