• Logo
  • SBMUJournals

Xylooligosaccharidesand Arabinoxylanoligosaccharides and Their Application as Prebiotics

Bradley Arthur Saville, Sandra Saville
442

Views

PDF

Abstract

Background and Objective: Xylooligosaccharides and arabinoxylanoligosaccharides have been subject to nearly 30 years of in vitro and clinical trials, and advances in process technology have led to more widespread commercial availability. This review was conducted to examine xylooligosaccharides and arabinoxylanoligosaccharides as next generation prebiotics.

Results and Conclusion: Xylooligosaccharides and arabinoxylanoligosaccharides are based upon 5-carbon sugars, and their microbial utilization in the digestive tract is thus fundamentally different from prebiotics such as fructooligosaccharides, inulin, and resistant starch that are oligomers/polymers of 6-carbon sugars connected by α bonds. Five carbon sugars and oligosaccharides connected by β bonds are more narrowly utilized; xylooligosaccharides and arabinoxylanoligosaccharidesare especially effective for selective feeding of Bifidobacteria, although they can also be used by some strains of Lactobacilli and other bacteria. Clinical studies on xylooligosaccharides and arabinoxylanoligosaccharides report beneficial impacts upon digestive health, management of blood sugars and lipids, beneficial modification of immune markers, and benefits for laxation. These outcomes have typically been observed at 1-4 grams per day, a lower dose than required for other prebiotics such as fructooligosaccharides and inulin. The lower dose requirement for clinical efficacy also provides advantages in terms of product formulation and more options for delivery of a clinically beneficial dose to consumers.


Keywords

▪Bifidobacteria ▪ Human clinical trials ▪Lactobacilli ▪ Prebiotics ▪ Xylooligosaccharides

References

Okazaki M, Fujikawa S, Matsumoto N. Effect of Xylooligosaccharide on the Growth of Bifidobacteria. Bifidobact Microflora 1990;9:77–86. doi:10.12938/bifidus1982.9.2_77.

Okazaki M, Fujikawa S, Matsumoto N. Effects of xylooligosaccharide on growth of bifidobacteria. J Japanese Soc Nutr Food Sci 1990;43. doi:10.4327/jsnfs.43.395.

Hopkins, Cummings, Macfarlane. Inter-species differences in maximum specific growth rates and cell yields of bifidobacteria cultured on oligosaccharides and other simple carbohydrate sources. J Appl Microbiol 1998;85:381–6. doi:10.1046/j.1365-2672.1998.00524.x.

Kontula P, von Wright A, Mattila-Sandholm T. Oat bran β-gluco- and xylo-oligosaccharides as fermentative substrates for lactic acid bacteria. Int J Food Microbiol 1998;45:163–9. doi:10.1016/S0168-1605(98)00156-1.

Gullon P, Moura P, Esteves MP, Girio FM, Dominguez H, Parajo JC. Assessment on the fermentability of xylooligosaccharides from rice husks by probiotic bacteria. J Agric Food Chem 2008;56:7482–7. doi:10.1021/jf800715b.

Li Z, Summanen PH, Komoriya T, Finegold SM. In vitro study of the prebiotic xylooligosaccharide (XOS) on the growth of Bifidobacterium spp and Lactobacillus spp. Int J Food Sci Nutr 2015;66:919–22. doi:10.3109/09637486.2015.1064869.

Makelainen H, Saarinen M, Stowell J, Rautonen N, Ouwehand AC. Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures. Benef Microbes 2010;1:139–48. doi:10.3920/BM2009.0029.

Ho AL, Kosik O, Lovegrove A, Charalampopoulos D, Rastall RA. In vitro fermentability of xylo-oligosaccharide and xylo-polysaccharide fractions with different molecular weights by human faecal bacteria. Carbohydr Polym 2018;179:50–8. doi:10.1016/j.carbpol.2017.08.077.

Chassard C, Goumy V, Leclerc M, Del’homme C, Bernalier-Donadille A. Characterization of the xylan-degrading microbial community from human faeces. FEMS Microbiol Ecol 2007;61:121–31. doi:10.1111/j.1574-6941.2007.00314.x.

Falony G, Calmeyn T, Leroy F, De Vuyst L. Coculture Fermentations of Bifidobacterium Species and Bacteroides thetaiotaomicron Reveal a Mechanistic Insight into the Prebiotic Effect of Inulin-Type Fructans. Appl Env Microbiol 2009;75:2312–9. doi:10.1128/AEM.02649-08.

Ananieva M, Mandadzhieva T, Stojanovski S, Iliev I, Ivanova I. Utilization of xylooligosaccharides from different Lactobacillus strains. J Biosci Biotechnol 2012:147–50.

Van Laere KM, Hartemink R, Bosveld M, Schols HA, Voragen AG. Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria. J Agric Food Chem 2000;48:1644–52. doi:10.1021/jf990519i.

Jaskari J, Kontula P, Siitonen A, Jousimies-Somer H, Mattila-Sandholm T, Poutanen K. Oat β-glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains. Appl Microbiol Biotechnol 1998;49:175–81. doi:10.1007/s002530051155.

Pastell H, Westermann P, Meyer AS, Tuomainen P, Tenkanen M. In vitro fermentation of arabinoxylan-derived carbohydrates by bifidobacteria and mixed fecal microbiota. J Agric Food Chem 2009;57:8598–606. doi:10.1021/jf901397b.

Kabel MA, Carvalheiro F, Garrote G, Avgerinos E, Koukios E, Parajó JC, et al. Hydrothermally treated xylan rich by-products yield different classes of xylo-oligosaccharides. Carbohydr Polym 2002;50:47–56. doi:10.1016/S0144-8617(02)00045-0.

Courtin CM, Swennen K, Verjans P, Delvour JA. Heat and pH stability of prebiotic arabinoxylooligosaccharides, xylooligosaccharides and fructooligosaccharides. Food Chem 2009;112:831–7. doi:10.1016/j.foodchem.2008.06.039.

Rumpagaporn P, Kaur A, Campanella OH, Patterson JA, Hamaker BR. Heat and pH stability of alkali-extractable corn arabinoxylan and its xylanase-hydrolyzate and their viscosity behavior. J Food Sci 2012;77:H23-30. doi:10.1111/j.1750-3841.2011.02482.x.

Iino T, Nishijima Y, Sawada S, Sasaki H, Harada H, Suwa Y, et al. Improvement of Constipation by a Small Amount of Xylooligosaccharides Ingestion in Adult Women. J Japanese Assoc Diet Fiber Res 1997;1:19–24. doi:10.11217/jjdf1997.1.19.

Tateyama I, Hashii K, Johno I, Iino T, Hirai K, Suwa Y, et al. Effect of xylooligosaccharide intake on severe constipation in pregnant women. J Nutr Sci Vitaminol (Tokyo) 2005;51:445–8. doi:10.3177/jnsv.51.445.

Chung Y-C, Hsu C-K, Ko C-Y, Chan Y-C. Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly. Nutr Res 2007;27:756–61. doi:10.1016/j.nutres.2007.09.014.

Na MH, Kim WK. Effects of xylooligosaccharide intake on fecal Bifidobacteria, lactic acid and lipid metabolism in Korean young women. Kor J Nutr 2007;40:154–61.

doi:10.1097/01.NPT.0000288316.43613.63.

Sheu WH-H, Lee I-T, Chen W, Chan Y-C. Effects of xylooligosaccharides in type 2 diabetes mellitus. J Nutr Sci Vitaminol (Tokyo) 2008;54:396–401. doi:10.3177/jnsv.54.396.

Yang J, Summanen PH, Henning SM, Hsu M, Lam H, Huang J, et al. Xylooligosaccharide supplementation alters gut bacteria in both healthy and prediabetic adults: a pilot study. Front Physiol 2015;6. doi:10.3389/fphys.2015.00216.

Childs CE, Roytio H, Alhoniemi E, Fekete AA, Forssten SD, Hudjec N, et al. Xylo-oligosaccharides alone or in synbiotic combination with Bifidobacterium animalis subsp. lactis induce bifidogenesis and modulate markers of immune function in healthy adults: a double-blind, placebo-controlled, randomised, factorial cross-over study. Br J Nutr 2014;111:1945–56. doi:10.1017/S0007114513004261.

Kajihara M, Kato S, Konishi M, Yamagishi Y, Horie Y, Ishii H. Xylooligosaccharide decreases blood ammonia levels in patients with liver cirrhosis. Am J Gastroenterol 2000;95:2514. doi:10.1111/j.1572-0241.2000.02712.x.

Finegold SM, Li Z, Summanen PH, Downes J, Thames G, Corbett K, et al. Xylooligosaccharide increases bifidobacteria but not lactobacilli in human gut microbiota. Food Funct 2014;5:436–45. doi:10.1039/c3fo60348b.

Lin S-H, Chou L-M, Chien Y-W, Chang J-S, Lin C-I. Prebiotic Effects of Xylooligosaccharides on the Improvement of Microbiota Balance in Human Subjects. Gastroenterol Res Pract 2016;6:1–6. doi:10.1155/2016/5789232.

Francois IEJA, Lescroart O, Veraverbeke WS, Marzorati M, Possemiers S, Evenepoel P, et al. Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers: a double-blind, randomised, placebo-controlled, cross-over trial. Br J Nutr 2012;108:2229–42. doi:10.1017/S0007114512000372.

Lecerf J-M, Depeint F, Clerc E, Dugenet Y, Niamba CN, Rhazi L, et al. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br J Nutr 2012;108:1847–58. doi:10.1017/S0007114511007252.

Maki KC, Gibson GR, Dickmann RS, Kendall CWC, Chen C-YO, Costabile A, et al. Digestive and physiologic effects of a wheat bran extract, arabino-xylan-oligosaccharide, in breakfast cereal. Nutrition 2012;28:1115–21. doi:10.1016/j.nut.2012.02.010.

Cloetens L, Broekaert WF, Delaedt Y, Ollevier F, Courtin CM, Delcour JA, et al. Tolerance of arabinoxylan-oligosaccharides and their prebiotic activity in healthy subjects: a randomised, placebo-controlled cross-over study. Br J Nutr 2010;103:703–13. doi:10.1017/S0007114509992248.

Francois IEJA, Lescroart O, Veraverbeke WS, Marzorati M, Possemiers S, Hamer H, et al. Effects of wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal parameters in healthy preadolescent children. J Pediatr Gastroenterol Nutr 2014;58:647–53. doi:10.1097/MPG.0000000000000285.

Walton GE, Lu C, Trogh I, Arnaut F, Gibson GR. A randomised, double-blind, placebo controlled cross-over study to determine the gastrointestinal effects of consumption of arabinoxylan-oligosaccharides enriched bread in healthy volunteers. Nutr J 2012;11:36. doi:10.1186/1475-2891-11-36.




DOI: https://doi.org/10.22037/afb.v5i3.20212

Refbacks

  • There are currently no refbacks.