Biotechnological Approach for the Production of Prebiotics and Search for New Probiotics and their Application in the Food Industry

  • Daniela Iga Buitrón
  • Leonardo Sepúlveda
  • Thelma Karina Morales Martínez
  • Cristóbal N Aguilar
  • Desirée Dávila Medina
  • Raúl Rodríguez-Herrera
  • Adriana C. Flores-Gallegos Universidad Autónoma de Coahuila
Keywords: ▪ Characterization ▪ Fermentation ▪ Oligosaccharides ▪ Prebiotics ▪ Probiotics


Background and objective: Prebiotics and probiotics intake have been widely recognized in past recent years due to possessing multiple health benefits. Prebiotics are non-digestible carbohydrates that promote the growth and/or activity of beneficial bacteria in the colon which improves the health. Moreover, the incorporation of probiotics in food has also been a growing practice due to its immunomodulatory effect, the production of organic acids and other compounds that promotes the absorption of nutrients and the general health of the digestive system.

Results and conclusion: Biotechnological strategies have been proposed for prebiotic production and purification in order to meet the demand to be included as ingredients in functional food formulation. Different aspects related to the substrates and different fermentation systems for their production as well as the purification and characterization processes are addressed. Also, we will present the benefits promoted by probiotics, the methods of isolation and characterization, as well as the evaluation of these attributes, so that they can be used in the food industry. With the technological developments in prebiotics and probiotics, it will be possible to deliver foods that respond to consumer demand with low cost and with pleasant sensory characteristics as well as providing beneficial health effects.

Conflict of interest: The authors declare no conflict of interest.


Valcheva R, Dieleman LA. Prebiotics: Definition and protective mechanisms. Best Practice & Research Clinical Gastroenterology. 2016;30(1):27-37.

Tian F, Khodadadi M, Karboune S. Optimization of levansucrase/endo-inulinase bi-enzymatic system for the production of fructooligosaccharides and oligolevans from sucrose. Journal of Molecular Catalysis B: Enzymatic. 2014;109:85-93.

Hirabayashi K, Kondo N, Toyota H, Hayashi S. Production of the Functional Trisaccharide 1-Kestose from Cane Sugar Molasses Using Aspergillus japonicus β-Fructofuranosidase. Current Microbiology. 2017;74(1):145-8.

Ganaie MA, Soni H, Naikoo GA, Santos Oliveira LT, Rawat HK, Mehta PK, et al. Screening of low-cost agricultural wastes to maximize the fructosyltransferase production and its applicability in the generation of fructooligosaccharides by solid-state fermentation. International Biodeterioration & Biodegradation. 2017;118:19-26.

Muñiz-Márquez DB, Contreras JC, Rodríguez R, Mussatto SI, Teixeira JA, Aguilar CN. Enhancement of fructosyltransferase and fructooligosaccharides production by A. oryzae DIA-MF in Solid-State Fermentation using aguamiel as culture medium. Bioresource Technology. 2016;213:276-82.

Sathish T, Prakasham RS. Intensification of Fructosyltransferases and Fructo-Oligosaccharides Production in Solid State Fermentation by Aspergillus awamori GHRTS. Indian Journal of Microbiology. 2013;53(3):337-42.

Nobre C, Castro CC, Hantson AL, Teixeira JA, De Weireld G, Rodrigues LR. Strategies for the production of high-content fructo-oligosaccharides through the removal of small saccharides by co-culture or successive fermentation with yeast. Carbohydrate Polymers. 2016;136:274-81.

Vera C, Guerrero C, Illanes A, Conejeros R. Fed-batch synthesis of galacto-oligosaccharides with Aspergillus oryzae β-galactosidase using optimal control strategy. Biotechnology Progress. 2014;30(1):59-67.

Wang P, Ma J, Zhang Y, Zhang M, Wu M, Dai Z, et al. Efficient Secretory Overexpression of Endoinulinase in Escherichia coli and the Production of Inulooligosaccharides. Applied Biochemistry and Biotechnology. 2016;179(5):880-94.

Ganaie MA, Gupta US, Kango N. Screening of biocatalysts for transformation of sucrose to fructooligosaccharides. Journal of Molecular Catalysis B: Enzymatic. 2013;97:12-7.

Kong L, Zhao X-H. Yields of three acids during simulated fermentation of inulin and xylo-oligosaccharides enhanced by six exogenous strains. Journal of Food Measurement and Characterization. 2017;11(2):696-703.

Cardoso BB, Silvério SC, Abrunhosa L, Teixeira JA, Rodrigues LR. β-galactosidase from Aspergillus lacticoffeatus: A promising biocatalyst for the synthesis of novel prebiotics. International Journal of Food Microbiology. 2017;257:67-74.

Lopes SMS, Krausová G, Carneiro JWP, Gonçalves JE, Gonçalves RAC, de Oliveira AJB. A new natural source for obtainment of inulin and fructooligosaccharides from industrial waste of Stevia rebaudiana Bertoni. Food Chemistry. 2017;225:154-61.

Sanches Lopes SM, Francisco MG, Higashi B, de Almeida RTR, Krausová G, Pilau EJ, et al. Chemical characterization and prebiotic activity of fructooligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures. Carbohydrate Polymers. 2016;152:718-25.

Apolinário AC, de Carvalho EM, de Lima Damasceno BPG, da Silva PCD, Converti A, Pessoa A, et al. Extraction, isolation and characterization of inulin from Agave sisalana boles. Industrial Crops and Products. 2017;108:355-62.

Ghosh A, Verma AK, Tingirikari JR, Shukla R, Goyal A. Recovery and Purification of Oligosaccharides from Copra Meal by Recombinant Endo-β-mannanase and Deciphering Molecular Mechanism Involved and Its Role as Potent Therapeutic Agent. Molecular Biotechnology. 2015;57(2):111-27.

Ni D, Zhu Y, Xu W, Bai Y, Zhang T, Mu W. Biosynthesis of inulin from sucrose using inulosucrase from Lactobacillus gasseri DSM 20604. International Journal of Biological Macromolecules. 2018;109:1209-18.

Lu L, Wu J, Song D, Zhao H, Gu G, Guo Y, et al. Purification of fructooligosaccharides by immobilized yeast cells and identification of ethyl β-d-fructofuranoside as a novel glycoside formed during the process. Bioresource Technology. 2013;132:365-9.

Aburto C, Guerrero C, Vera C, Wilson L, Illanes A. Simultaneous synthesis and purification (SSP) of galacto-oligosaccharides in batch operation. LWT - Food Science and Technology. 2016;72:81-9.

Kim HY, Bong YJ, Jeong JK, Lee S, Kim BY, Park KY. Heterofermentative lactic acid bacteria dominate in Korean commercial kimchi. Food Sci Biotechnol. 2016;25(2):541–5.

Hidaka H, Tashiro Y, Eida T. Proliferation of Bifidobacteria by Oligosaccharides and Their Useful Effect on Human Health. Bifidobact Microflora. 1991;10(1):65–79.

Botes M, Loos B, van Reenen CA, Dicks LMT. Adhesion of the probiotic strains Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 to Caco-2 cells under conditions simulating the intestinal tract, and in the presence of antibiotics and anti-inflammatory medicaments. Arch Microbiol. 2008;190(5):573–84.

Dallal S, S Z, A D, Hosseini M. Identification and characterization of probiotic lactic acid bacteria isolated from traditional persian pickled vegetables. GMS Hyg Infect Control. 2017;12:1–7.

Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–14.

Carr FJ, Chill D, Maida N. The Lactic Acid Bacteria: A Literature Survey. Crit Rev Microbiol. 2002; 28(4):281–370.

Olveira Fuster G, González-Molero I. Probióticos y prebióticos en la practica clínica. Nutr Hosp. Jarpyo Editores; 2007; 22:26–34.

Holzapfel WH, Haberer P, Geisen R, Björkroth J, Schillinger U. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr. 2001;73(2 Suppl):365S–373S.

Dinev T, Beev G, Tzanova M, Denev S, Dermendzhieva D, Stoyanova A. Review Antimicrobial Activity Of Lactobacillus Plantarum Against Pathogenic And Food Spoilage Microorganisms: A Review. Bulg J Vet Med. 2017

Goktepe I, Juneja VK, Ahmedna M. Probiotics in food safety and human health. CRC Press/Taylor & Francis Group; 2006. 494 p.

Valdovinos MA, Montijo E, Abreu AT, Heller S, González-Garay A, Bacarreza D, et al. Consenso mexicano sobre probióticos en gastroenterología. Rev Gastroenterol México. Elsevier Doyma; 2017;82(2):156–78.

Konings WN, Kuipers OP, Veld JHJH. Lactic Acid Bacteria: Genetics, Metabolism and Applications : Proceedings of the Sixth Symposium on lactic acid bacteria: genetics, metabolism and applications, 19-23 September 1999, Veldhoven, the Netherlands. Springer Netherlands; 1999. 413 p.

Ramírez JC, Ulloa P, Velázquez M, Ulloa J, Arce F. Bacterias lácticas: Importancia en alimentos y sus efectos en la salud. Vol. Año 2, Revista Fuente. 2011. 16 p.

Björkstén B, Sepp E, Julge K, Voor T, Mikelsaar M. Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol. 2001;108(4):516–20.

Tingtao Chen T, Tan Q, Wang M, Xiong S, Jiang S, Wu Q, et al. Identification of bacterial strains in viili by molecular taxonomy and their synergistic effects on milk curd and exopolysaccharides production. AFRICAN J Biotechnol. Academic Journals (Kenya); 2011;10(74):16969–75.

Versalovic J, Woods CR, Georghiou PR, Hamill RJ, Lupski JR. DNA-based identification and epidemiologic typing of bacterial pathogens. Arch Pathol Lab Med. 1993;117(11):1088–98.

Stern MJ, Ames GF, Smith NH, Robinson EC, Higgins CF. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell. 1984;37(3):1015–26.

Cocconcelli PS, Parisi MG, Senini L, Bottazzi V. Use of RAPD and 16S rDNA sequencing for the study of Lactobacillus population dynamics in natural whey culture. Lett Appl Microbiol. 1997;25(1):8–12.

De las Cagigas Reig AL, Blanco Anesto J. Prebióticos Y Probióticos, Una Relación Beneficiosa. Rev Cuba Aliment Nutr. 2002;16(1):63–8.

Hwanhlem N, Ivanova T, Biscola V, Choiset Y, Haertlé T. Bacteriocin producing Enterococcus faecalis isolated from chicken gastrointestinal tract originating from Phitsanulok, Thailand: Isolation, screening, safety evaluation and probiotic properties. Food Control. Elsevier; 2017;78:187–95.

Manzano A C, Estupiñán G D, Poveda E E. Efectos clínicos de los probióticos: qué dice la evidencia. Rev Chil Nutr. Sociedad Chilena de Nutrición, Bromatología y Toxicología; 2012;39(1):98–110.

Kaila M, Isolauri E, Soppi E, Virtanen E, Laine S, Arvilommi H. Enhancement of the Circulating Antibody Secreting Cell Response in Human Diarrhea by a Human Lactobacillus Strain. Pediatr Res. 1992;32(2):141–4.

Gill HS, Rutherfurd KJ, Cross ML, Gopal PK. Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am J Clin Nutr. 2001;74(6):833–9.

Icaza-Chávez ME. Microbiota intestinal en la salud y la enfermedad. Rev Gastroenterol México. Elsevier; 2013;78(4):240–8.

Morales P, Brignardello J, Gotteland M. La microbiota intestinal: Un nuevo actor en el desarrollo de la obesidad. Rev Med Chil. Sociedad Médica de Santiago; 2010;138(8):1020–7.

Wang B, Yao M, Lv L, Ling Z, Li L. The Human Microbiota in Health and Disease. Engineering. Elsevier; 2017;3(1):71–82.

Guarner F. Role of intestinal flora in health and disease. Nutr Hosp. Jarpyo Editores; 2007;22:14–9.

Sánchez Gundín J, Torres Suárez AI, Fernández Carballido AM, Valdivieso Martínez L, Barreda Hernández D. Colorectal cancer: prevention and treatment. An Real Acad Farm. 2017;83(2):188–99.

Wollowski I, Rechkemmer G, Pool-Zobel BL. Protective role of probiotics and prebiotics in colon cancer. Am J Clin Nutr. 2001;73(2 Suppl):451S–455S.

Pessione E, Mazzoli R, Giuffrida MG, Lamberti C, Garcia-Moruno E, Barello C, et al. A proteomic approach to studying biogenic amine producing lactic acid bacteria. Proteomics. 2005;5(3):687–98.

Santos MHS. Biogenic amines: their importance in foods. Int J Food Microbiol. Elsevier; 1996;29(2–3):213–31.

Kateřina K, Hana S, Štěpán T, Iva OA, Milada P. Production of biogenic Amines by enterococci. Czech J Food Sci. 2009;27(SPECIAL ISSUE 2):50–5.

Coton M, Romano A, Spano G, Ziegler K, Vetrana C, Desmarais C, et al. Occurrence of biogenic amine-forming lactic acid bacteria in wine and cider. Food Microbiol. Elsevier Ltd; 2010;27(8):1078–85.

FAO/WHO. Joint FAO/WHO Expert Meeting on the Public Health Risks of Histamine and Other Biogenic Amines from Fish and Fishery Products. Food Agric Organ United Nations World Heal Organ. 2012 [cited 2018 Mar 13]

Kalac P, Vecova SŠ, Pelikaovaepartment T. Levels of biogenic amines in typical vegetable products. Food Chem. 2002;77:349–51.

Tamang JP, Shin D-H, Jung S-J, Chae S-W. Functional Properties of Microorganisms in Fermented Foods. Front Microbiol. Frontiers Media SA; 2016;7:578.

Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP. Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol. 2016;100(7):2939–51.

Cho J, Lee D, Yang C, Jeon J, Kim J, Han H. Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol Lett. Blackwell Science Ltd; 2006;257(2):262–7.

Johanningsmeier S, McFeeters RF, Fleming HP, Thompson RL. Effects of Leuconostoc mesenteroides Starter Culture on Fermentation of Cabbage with Reduced Salt Concentrations. J Food Sci. 2007;72(5):M166–72.

Review Article