• Logo
  • SBMUJournals

Waste Streams of the Animal-Processing Industry as Feedstocks to Produce Polyhydroxyalkanoate Biopolyesters

Martin Koller, Khurram Shahzad, Gerhart Braunegg




Background and objective: Animal processing industry in the EU-28 states, encompassing slaughterhouses, rendering companies, and others, generates high quantities of waste streams containing about 500,000 t of lipids plus considerable amounts of offal material and meat and bone meal. These materials need to be utilized in a value-creating way, such as via bioconversion towards polyhydroxyalkanoate biopolyesters of diverse molecular composition and various plastic-like features. As a novelty, the present article summarizes for the first time previous and current efforts to utilize these animal-based waste streams for polyhydroxyalkanoate production in terms of selection of suitable microbial production strains, upstream processing of the raw material to generate accessible carbon sources, kinetics of the bioprocess, characterization of the produced biopolyesters of diverse molecular architecture, environmental process assessment, and economic feasibility.

Results and conclusion: The compared case studies clearly demonstrate that utilization of animal processing waste as a second generation feedstock for biopolyester production can definitely become an economically viable and sustainable process provided the utilization of optimized microbial strains, tailored feeding regime, short transportation distances, and clear business plans for commercialization of the final products. Most of all, using animal based waste for generation of second generation biopolyesters and second generation biofuel contributes to food security by preserving raw materials of nutritional value.

Conflict of interest: The authors declare no conflict of interest.


▪ Animal-processing waste ▪ Biodiesel ▪ Food security ▪ Lipids ▪ Polyhydroxyalkanoates


Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MA. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 2017;4(2):55. doi:10.3390/bioengineering4020055

Chen GGQ. (Ed.). (2009). Plastics from bacteria: natural functions and applications (Vol. 14). Springer Science & Business Media.

Koller M. Poly(hydroxyalkanoates) for food packaging: Application and attempts towards implementation. Appl Food Biotechnol. 2014;1(1):3-15. doi:10.22037/afb.v1i1.7127

Zinn M, Witholt B, Egli T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Del Rev. 2001;53(1):5-21. doi:10.1016/S0169-409X(01)00218-6

Luef KP, Stelzer F, Wiesbrock F. Poly(hydroxyalkanoate)s in medical applications. Chem Biochem Eng Q. 2015;29(2):287-297. doi:10.15255/CABEQ.2014.2261

Khosravi-Darani K, Bucci DZ. Application of poly(hydroxyalkanoate) in food packaging: Improvements by nanotechnology. Chem. Biochem. Eng. Q. 2015;29(2):275-285. doi:10.15255/CABEQ.2014.2260

Braunegg G, Bona R, Koller M. Sustainable polymer production. Polymer-Plastics Technol Eng. 2004;43(6):1779-1793. doi:10.1081/PPT-200040130

Koller M. Salerno A, Dias M, Reiterer, A, Braunegg G. Modern biotechnological polymer synthesis: a review. Food Technol Biotechnol. 2010;48(3):255-269. http://hrcak.srce.hr/57557

Keshavarz T, Roy, I. Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol. 2010;13(3):321-326. doi:10.1016/j.mib.2010.02.006

Koller M, Maršálek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol. 2017;37:24-38. doi:10.1016/j.nbt.2016.05.001

Tan GYA, Chen CL, Li L, Ge L, Wang L, Razaad IMN, Li Y, Zhao L, Mo Y, Wang J-Y. Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 2014;6:706-754. doi:10.3390/polym6030706

Choi J, Lee SY. Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol. 1999;51:13-21. doi: 10.1007/s002530051357

Obruca S, Benesova P, Maršalek L, Marova I. Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q. 2015;29:135-144. doi:10.15255/CABEQ.2014.2253

Khosravi-Darani K, Mokhtari ZB, Amai T, Tanaka K. Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Appl Microbiol Biotechnol. 2013;97:1407-1424.

Koller M, Maršálek L. Cyanobacterial polyhydroxyalkanoate production: Status Quo and Quo Vadis?. Curr Biotechnol. 2015;4:464-480.

Drosg B, Fritz I, Gattermayr F, Silvestrini L. Photo-autotrophic production of poly (hydroxyalkanoates) in cyanobacteria. Chem Biochem Eng Q. 2015;29:145-156. doi:10.15255/CABEQ.2014.2254

Troschl C, Meixner K, Drosg B. Cyanobacterial PHA production—review of recent advances and a summary of three years’ working experience running a pilot plant. Bioengineering 2017;4:26. doi:10.3390/bioengineering4020026

Kucera D, Benesova P, Ladicky P, Pekar M, Sedlacek P, Obruca S. Production of polyhydroxyalkanoates Using hydrolyzates of spruce sawdust: Comparison of hydrolyzates detoxification by application of overliming, active carbon, and lignite. Bioengineering 2017;4(2):53. doi:10.3390/bioengineering4020053

Cesário MT, Raposo RS, de Almeida MCM, van Keulen F, Ferreira B S, da Fonseca MMR. Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnol. 2014;31(1):104-113. doi: 10.1016/j.nbt.2013.10.004

Salgaonkar BB, Bragança JM. Utilization of sugarcane bagasse by Halogeometricum borinquense strain E3 for Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioengineering 2017;4(2),50. doi:10.3390/bioengineering4020050

Obruca S, Marova I, Melusova S, Mravcova L. Production of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037. Ann Microbiol. 2011;61:947-953. doi:10.1007/s13213-011-0218-5

Koller M, Hesse P, Bona R, Kutschera C, Atlić A, Braunegg G. Potential of various archae‐and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromol Biosci. 2007;7:218-226. doi: 10.1002/mabi.200600211

Pais J, Serafim LS, Freitas F, Reis MA. Conversion of cheese whey into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. New Biotechnol. 2016; 33(1): 224-230. doi: 10.1016/j.nbt.2015.06.001

Koller M, Braunegg G. Biomediated production of structurally diverse poly(hydroxyalkanoates) from surplus streams of the animal processing industry. Polimery 2015;60:298-308. doi:10.14314/polimery.2015.298

Cavalheiro JM, de Almeida MCM, Grandfils C, Da Fonseca MMR. Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Proc Biochem. 2009;44:509-515.doi:10.1016/j.procbio.2009.01.008

Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G. Archaeal production of polyhydroxyalkanoate (PHA) co-and terpolyesters from biodiesel industry-derived by-products. Archaea 2013;2013:article ID 129268. doi:10.1155/2013/129268

Koller M, Maršalek L. Potential of diverse prokaryotic organisms for glycerol-based Polyhydroxyalkanoate production. Appl Food Biotechnol. 2015;2(3):3-15.

Koller M, Maršálek L. Principles of glycerol-based Polyhydroxyalkanoate (PHA) production. Appl Food Biotechnol. 2015;2(4):3-10.

Bhattacharya, S., Dubey, S., Singh, P., Shrivastava, A., & Mishra, S. Biodegradable polymeric substances produced by a marine bacterium from a surplus stream of the biodiesel industry. Bioengineering 2016;3(4):34. doi:10.3390/bioengineering3040034

Obruca S, Marova I, Snajdar O, Mravcova L, Svoboda Z. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol Lett. 2010;32:1925-1932. doi:10.1007/s10529-010-0376-8

Walsh M, O’Connor K, Babu R, Woods T, Kenny S. Plant oils and products of their hydrolysis as substrates for polyhydroxyalkanoate synthesis. Chem Biochem Eng Q. 2015;29:123-133. http://hrcak.srce.hr/141907

Obruca S, Petrik S, Benesova P, Svoboda Z, Eremka L, Marova I. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Applied Microbiol Biotechnol. 2014;98(13):5883-5890. doi:10.1007/s00253-014-5653-3

http://cordis.europa.eu/result/rcn/58861_en.html (online resource; last accessed September 20th, 2017)

Pennings JM, Wansink B, Meulenberg MT. A note on modeling consumer reactions to a crisis: The case of the mad cow disease. Int J Res Market. 2002;19(1):91-100.

Schober S, Seidl I, Mittelbach M. Ester content evaluation in biodiesel from animal fats and lauric oils. Europ J Lipid Sci Technol. 2006;108:309-314. doi:10.1002/ejlt.200500324

Špoljarić, IV, Lopar M, Koller, M., Muhr A, Salerno A, Reiterer A, Horvat P. In silico optimization and low structured kinetic model of poly[(R)-3-hydroxybutyrate] synthesis by Cupriavidus necator DSM 545 by fed-batch cultivation on glycerol. J Biotechnol. 2013;168:625-635. doi:10.1016/j.jbiotec.2013.08.019

Braunegg G, Genser K, Bona R, Haage G, Schellauf F, Winkler E. Production of PHAs from agricultural waste material. Macromol Symp. 1999;144:375-383. doi:10.1002/masy.19991440135

Koller M, Salerno A, Muhr A, Reiterer A, Braunegg G. Polyhydroxyalkanoates: Biodegradable polymers and plastics from renewable resources. Mater Tehnol. 2013;47:5-12. UDK 577.11:577.115

Titz M, Kettl KH, Shahzad K, Koller M, Schnitzer H, Narodoslawsky M. Process optimization for efficient biomediated PHA production from animal-based waste streams. Clean Technol Environ Pol. 2012;14:495-503. doi:10.1007/s10098-012-0464-7

Shahzad K, Kettl KH, Titz M, Koller M, Schnitzer H, Narodoslawsky M. Comparison of ecological footprint for biobased PHA production from animal residues utilizing different energy resources. Clean Technol Environ Pol. 2013;15:525-536. doi:10.1007/s10098-013-0608-4

Cromwick AM, Foglia T, Lenz RW. The microbial production of poly (hydroxyalkanoates) from tallow. Appl Microbiol Biotechnol. 1996;46:464-469. doi:10.1007/s002530050845

Ashby RD, Foglia TA. Poly(hydroxyalkanoate) biosynthesis from triglyceride substrates. Appl Microbiol Biotechnol. 1998;49:431-437. doi:10.1007/s002530051194

Muhr A, Rechberger EM, Salerno A, Reiterer A, Schiller M, Kwiecień M, Adamus G, Kowalczuk M, Strohmeier K, Schober S, Mittelbach M, Koller M. Biodegradable latexes from animal-derived waste: Biosynthesis and characterization of mcl-PHA accumulated by Ps. citronellolis. React Funct Polym. 2013;73:1391-1398. doi:10.1016/j.reactfunctpolym.2012.12.009

Muhr A, Rechberger, EM, Salerno A, Reiterer A, Malli K, Strohmeier K, Schober S, Mittelbach M, Koller M. Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animal-derived waste. J Biotechnol. 2013;165:45-51. doi:10.1016/j.jbiotec.2013.02.003

Riedel SL, Jahns S, Koenig S, Bock MC, Brigham CJ, Bader J, Stahl U. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J Biotechnol. 2015;214:119-127. doi:10.1016/j.jbiotec.2015.09.002

Braunegg G, Sonnleitner BY, Lafferty RM. A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Europ J Appl Microbiol Biotechnol. 1978;6:29-37. doi: 10.1007/BF00500854

Nonato R, Mantelatto P, Rossell C. Integrated production of biodegradable plastic, sugar and ethanol. Appl Microbiol Biotechnol. 2001;57(1-2):1-5. doi:10.1007/s002530100732

Koller M, Salerno A, Strohmeier K, Schober S, Mittelbach M, Illieva V, Chiellini E, Braunegg G. Novel precursors for production of 3-hydroxyvalerate-containing poly[(R)-hydroxyalkanoate]s. Biocat Biotrans. 2014;32:161-167. doi:10.3109/10242422.2014.913580

Kettl K-H, Titz M, Koller M, Shahzad K, Schnitzer H, Narodoslawsky M. Process design and evaluation of biobased polyhydroxyalkanoates (PHA) production. Chem Eng Trans. 2011;25:983–988

Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P. Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 2005;6(2):561-565. doi:10.1021/bm049478b

Schnitzer H, Ulgiati S. Less bad is not good enough: approaching zero emissions techniques and systems. J Cleaner Prod. 2007;15:1185–1189. doi:10.1016/j.jclepro.2006.08.001

Narodoslawsky M, Shahzad K, Kollmann R, Schnitzer H. LCA of PHA production–identifying the ecological potential of bio-plastic. Chem Biochem Eng Q. 2015;29:299-305. http://hrcak.srce.hr/141919

Shahzad K, Narodoslawsky M, Sagir M, Ali N, Ali S, Imtiaz Rashid M, Ismail IMI, Koller M. Techno-economic feasibility of waste biorefinery: Using slaughtering waste streams as starting material for biopolyester production. Waste Manage. 2017;67:73-85. doi:10.1016/j.wasman.2017.05.047

DOI: https://doi.org/10.22037/afb.v5i4.18557


  • There are currently no refbacks.