• Logo
  • SBMUJournals

Study on the Effect of Levulinic Acid on Whey-Based Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Hydrogenophaga pseudoflava

Martin Koller, Paula Hesse, Hubert Fasl, Franz Stelzer, Gerhart Braunegg
740

Views

PDF

Abstract

Background and Objective: Production of polyhydroxyalkanoate copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyvalerate units was for the first time studied using the production strain Hydrogenophaga pseudoflava based on sustainable raw materials. This strategy provides for increased cost efficiency in PHA production and in enhanced material quality.

Material and Methods: As a particularity, production of these poly(3-hydroxybutyrate-co-3- hydroxyvalerate) copolyesters was based on a novel substrate/co-substrate combination: whey permeate from dairy industry, on the one hand, acted as substrate for biomass and 3HB biosynthesis; on the other hand, levulinic acid, accessible from various renewable resources, was used as 3HV-related precursor compound. The experiments were carried out on shaking flask scale using defined nutrient media.

Results and Conclusion: Applied during nutritionally balanced growth of H. pseudoflava, levulinicacid displays drastic growth inhibition at rather low concentrations of 0.2 g l-1 (growth inhibition constant Ki = 0.032), which suggests the careful supply of this compound in the first phase of cultivation. Under nitrogen-free cultivation conditions, inhibition of the strain´s metabolism by levulinic acid was less pronounced. Here, poly(3-hydroxybutyrate-co- 3-hydroxyvalerate) concentrations up to 4.2 g l-1 and volumetric poly(3-hydroxybutyrate-co-3- hydroxyvalerate) productivities up to 0.06 g l-1 h -1 were achieved in dependence on the precursor supply. Investigating poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composition in setups supplied with differently composed whey/levulinic acid mixtures revealed 3- hydroxyvalerate fractions in the polymer between 0 and 0.6 mol mol-1 . This study successfully demonstrates the feasibility of combined utilization of different waste- and by-products from food industry and agriculture for generation of value-added 2nd generation biopolymers.

Conflict of interest: The authors declare no conflict of interest.


Keywords

▪ Biopolymers ▪Levulinic acid ▪Polyhydroxyalkanoate (PHA) ▪Poly(3-hydroxybutyrate-co- 3-hydroxyvalerate) ▪Process economics ▪Whey

References

Lee SY. Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol. 1996; 14(11): 431-438.

Chen GQ. Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In: Plastics from bacteria (pp. 17-37). 2010, Springer Berlin Heidelberg.

Choi J, Lee SY. (2000). Economic considerations in the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial fermentation. Appl Microbiol Biotechnol. 2000; 53(6): 646-649.

Levett I, Birkett G, Davies N, Bell A, Langford A, Laycock B, et al. Techno-economic assessment of poly-3-hydroxybutyrate (PHB) production from methane—The case for thermophilic bioprocessing. J Environ Chem Eng. 2016; 4(4): 3724-3733.

Fabra MJ, Sánchez G, López-Rubio A, Lagaron JM. Microbiological and ageing performance of polyhydroxyalkanoate-based multilayer structures of interest in food packaging. LWT-Food Sci Technol. 2014; 59(2): 760-767.

Zinn M, Witholt B, Egli T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev. 2001; 53(1): 5-21.

Jendrossek D. Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol. 2009; 191(10): 3195-3202.

Jendrossek D, Pfeiffer D. New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3‐hydroxybutyrate). Environ Microbiol. 2014; 16(8): 2357-2373.

Vadlja D, Koller M, Novak M, Braunegg G, Horvat P. Footprint area analysis of binary imaged Cupriavidus necator cells to study PHB production at balanced, transient, and limited growth conditions in a cascade process. Appl Microbiol Biotechnol. 2016; 100(23): 10065-10080.

Tan GYA, Chen CL, Li L, Ge L, Wang L, Razaad IMN, et al. Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 2014; 6(3): 706-754.

Obruca S, Marova I, Stankova M, Mravcova L, Svoboda Z. Effect of ethanol and hydrogen peroxide on poly (3-hydroxybutyrate) biosynthetic pathway in Cupriavidus necator H16. World J Microbiol Biotechnol. 2010; 26(7): 1261-1267.

Obruca S, Marova I, Svoboda Z, Mikulikova R. Use of controlled exogenous stress for improvement of poly(3-hydroxybutyrate) production in Cupriavidus necator. Folia Microbiol. 2010; 55(1): 17-22.

Obruca S, Doskocil L, Krzyzanek V, Hrubanova K, Sedlacek P, Mravec F., et al. Polyhydroxyalkanoates in Bacterial Cells-More Than just Storage Materials. Materials Science Forum 2016; 851: 20-25.

Obruca S, Marova I, Snajdar O, Mravcova L, Svoboda Z. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol Lett. 2010; 32(12): 1925-1932.

Obruca S, Sedlacek P, Mravec F, Samek O, Marova I. Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells. Appl Microbiol Biotechnol. 2016; 100(3): 1365-1376.

Obruca S, Sedlacek P, Krzyzanek V, Mravec F, Hrubanova K, Samek O, et al. Accumulation of poly(3-hydroxybutyrate) helps bacterial cells to survive freezing. PLoS One 2016; 11(6): e0157778.

Arora NK, Singhal V, Maheshwari DK. Salinity-induced accumulation of poly-β-hydroxybutyrate in rhizobia indicating its role in cell protection. World J Microbiol Biotechnol. 2006; 22(6): 603-606.

Jiang G, Hill DJ, Kowalczuk M, Johnston B, Adamus G, Irorere V, Radecka I. Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery. Int J Mol Sci. 2016; 17(7): 1157 (21 pages).

Solaiman DK, Ashby RD, Foglia TA, Marmer WN Conversion of agricultural feedstock and coproducts into poly (hydroxyalkanoates). Appl Microbiol Biotechnol. 2006; 71(6): 783-789.

Koller M, Atlić A, Miranda de Sousa Dias M, Reiterer A, Braunegg G. Microbial PHA production from waste raw materials. In: Plastics from bacteria (pp. 85-119). 2010, Springer, Berlin Heidelberg.

Obruca S, Benesova P, Marsalek L, Marova I. Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q. 2015; 29(2): 135-144.

Riedel SL, Jahns S, Koenig S, Bock M C, Brigham CJ, Bader J, Stahl U. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J Biotechnol. 2015; 214: 119-127.

Khosravi-Darani K, Mokhtari ZB, Amai T, Tanaka K. Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Appl Microbiol Biotechnol. 2013; 97(4): 1407-1424.

Tanaka K, Miyawaki K, Yamaguchi A, Khosravi-Darani K, Matsusaki H. Cell growth and P(3HB) accumulation from CO2 of a carbon monoxide-tolerant hydrogen-oxidizing bacterium, Ideonella sp. O-1. Appl Microbiol Biotechnol 2011; 92(6): 1161-1169.

Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, et al. Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nature Biotechnol 2006; 24(10): 1257-1262.

Drosg B, Fritz I, Gattermayr F, Silvestrini L. Photo-autotrophic production of poly(hydroxyalkanoates) in cyanobacteria. Chem Biochem Eng Q. 2015; 29(2): 145-156.

Koller M, Maršálek L. Cyanobacterial Polyhydroxyalkanoate Production: Status Quo and Quo Vadis?. Curr Biotechnol. 2015; 4(4): 464-480.

Kaewbai-ngam A, Incharoensakdi A, Monshupanee T. Increased accumulation of polyhydroxybutyrate in divergent cyanobacteria under nutrient-deprived photoautotrophy: An efficient conversion of solar energy and carbon dioxide to polyhydroxybutyrate by Calothrix scytonemicola TISTR 8095. Bioresource Technol. 2016; 212, 342-347.

Akiyama H, Okuhata H, Onizuka T, Kanai S, Hirano M, Tanaka, et al. Antibiotics-free stable polyhydroxyalkanoate (PHA) production from carbon dioxide by recombinant cyanobacteria. Bioresource Technol. 2011; 102(23): 11039-11042.

Koller M, L, Miranda de Sousa Dias M, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol. 2017; 37(1): 123-137.

Koller M, Hesse P, Bona R, Kutschera C, Atlić A, Braunegg G. Potential of various archae‐and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromol Biosci. 2007; 7(2): 218-226.

Koller M, Bona R, Chiellini E, Fernandes EG, Horvat P, Kutschera C., et al. Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Bioresource Technol. 2008; 99(11): 4854-4863.

Koller M, Atlić A, Gonzalez‐Garcia Y, Kutschera C, Braunegg G. Polyhydroxyalkanoate (PHA) biosynthesis from whey lactose. Macromol Symp. 2008; 272(1): 87-92.

Koller M, Hesse P, Salerno A, Reiterer A, Braunegg G. A viable antibiotic strategy against microbial contamination in biotechnological production of polyhydroxyalkanoates from surplus whey. Biomass Bioenergy 2011; 35(1): 748-753.

Koller M, Sandholzer D, Salerno A, Braunegg G, Narodoslawsky M. Biopolymer from industrial residues: Life cycle assessment of poly (hydroxyalkanoates) from whey. Resour Conserv Recy. 2013; 73: 64-71.

Audic JL, Chaufer B, Daufin G. Non-food applications of milk components and dairy co-products: A review. De Lait 2003; 83(6): 417-438.

Prazeres AR, Carvalho F, Rivas J. Cheese whey management: A review. J Environ Manage 2012; 110: 48-68.

Koller M, Niebelschütz H, Braunegg G. Strategies for recovery and purification of poly[(R)-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass. Eng Life Sci. 2013; 13(6): 549-562.

Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbüchel A. PHA recovery from biomass. Biomacromolecules 2013; 14(9): 2963-2972.

Jacquel N, Lo CW, Wei YH, Wu HS, Wang SS. Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochem Eng J. 2008; 39(1): 15-27.

Khosravi-Darani K, Vasheghani-Farahani E, Yamini Y, Bahramifar N. Solubility of poly (β-hydroxybutyrate) in supercritical carbon dioxide. J Chem Eng Data. 2008; 48(4): 860-863.

Khosravi‐Darani K, Vasheghani‐Farahani E, Shojaosadati SA, Yamini Y. Effect of process variables on supercritical fluid disruption of Ralstonia eutropha cells for poly (R‐hydroxybutyrate) recovery. Biotechnol Progr. 2004; 20(6): 1757-1765.

Kaur G, Roy I. Strategies for large-scale production of polyhydroxyalkanoates. Chem Biochem Eng Q. 2015; 29(2): 157-172.

Koller M, Muhr A. Continuous production mode as a viable process-engineering tool for efficient poly(hydroxyalkanoate) (PHA) bio-production. Chem Biochem Eng Q. 2014; 28(1): 65-77.

Koller M, Braunegg G. Potential and prospects of continuous polyhydroxyalkanoate (PHA) production. Bioengineering 2015; 2(2): 94-121.

Braunegg G, Lefebvre G, Renner G, Zeiser A, Haage G, Loidl-Lanthaler K. Kinetics as a tool for polyhydroxyalkanoate production optimization. Can J Microbiol. 1995; 41(13): 239-248.

Albuquerque MGE, Martino V, Pollet E, Avérous L, Reis MAM. Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: effect of substrate composition and feeding regime on PHA productivity, composition and properties. J Biotechnol. 2011; 151(1): 66-76.

Serafim LS, Lemos PC, Albuquerque MG, Reis MA. Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol. 2008; 81(4): 615-628.

Martínez-Sanz ., Villano M, Oliveira C, Albuquerque MG, Majone M, Reis MAM, et al. Characterization of polyhydroxyalkanoates synthesized from microbial mixed cultures and of their nanobiocomposites with bacterial cellulose nanowhiskers. New Biotechnol. 2014; 31(4), 364-376.

González-García Y, Nungaray J, Córdova J, González-Reynoso O, Koller M, Atlić A, Braunegg G. Biosynthesis and characterization of polyhydroxyalkanoates in the polysaccharide-degrading marine bacterium Saccharophagus degradans ATCC 43961. J Ind Microbiol Biotechnol. 2008; 35(6): 629-633.

Obruca S, Marova I, Melusova S, Mravcova L. Production of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037. Ann Microbiol. 2011; 61(4): 947-953.

Mokhtari-Hosseini ZB, Vasheghani Farahani E, Shojaosadati SA, Karimzadeh R, Khosravi Darani K. Media selection for poly (hydroxybutyrate) production from methanol by Methylobacterium extorquens DSMZ 1340. Iran J Chem Chem Eng. 28(3): 45-52.

Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G. Archaeal production of polyhydroxyalkanoate (PHA) co-and terpolyesters from biodiesel industry-derived by-products. Archaea 2013; 2013: Article ID 129268

Muhr A, Rechberger EM, Salerno A, Reiterer A, Schiller M, Kwiecień M, et al. Biodegradable latexes from animal-derived waste: Biosynthesis and characterization of mcl-PHA accumulated by Ps. citronellolis. React Funct Polym. 2013; 73(10): 1391-1398.

Muhr A, Rechberger EM, Salerno A, Reiterer A, Malli K, Strohmeier K, et al. Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animal-derived waste. J Biotechnol. 2013; 165(1): 45-51.

Bugnicourt E, Cinelli P, Lazzeri A, Alvarez VA. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett. 2014; 8(11): 791–808.

Wang S, Chen W, Xiang H, Yang J, Zhou Z, Zhu M. Modification and potential application of short-chain-length polyhydroxyalkanoate (scl-PHA). Polymers 2016; 8(8): 273.

Li X, Cui R, Sun L, Aifantis KE, Fan Y, Feng Q, et al. 3D-printed biopolymers for tissue engineering application. Int J Polym Science, 2014.

Bonartsev AP, Zharkova II, Yakovlev SG, Myshkina VL, Makhina TK, Zernov AL, et al. 3D-Scaffolds from poly(3-hydroxybutyrate) poly(ethylene glycol) copolymer for tissue engineering. J Biomater Tissue Eng. 2016; 6(1), 42-52.

Koller M. Poly(hydroxyalkanoates) for food packaging: Application and attempts towards implementation. Applied Food Biot. 2014; 1(1): 3-15.

Koller M, Salerno A, Strohmeier K, Schober S, Mittelbach M., Illieva V, et al. Novel precursors for production of 3-hydroxyvalerate-containing poly[(R)-hydroxyalkanoate]s. Biocat Biotrans 2014; 32(3): 161-167.

Koller M, Miranda de Sousa Dias M, Rodríguez-Contreras A, Kunaver M, Žagar E, Kržan A, Braunegg G. Liquefied wood as inexpensive precursor-feedstock for bio-mediated incorporation of (R)-3-hydroxyvalerate into polyhydroxyalkanoates. Materials 2015; 8(9): 6543-6557.

Willems A, Busse J, Goor M, Pot B, Falsen E, Jantzen E, et al. Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int J Syst Evol Microbiol. 1989; 39(3): 319-333.

Bertrand JL, Ramsay BA, Ramsay JA, Chavarie C. Biosynthesis of poly-β-hydroxyalkanoates from pentoses by Pseudomonas pseudoflava. Appl Environ Microbiol. 1990; 56(10): 3133-3138.

Choi MH, Song JJ, Yoon SC. Biosynthesis of copolyesters by Hydrogenophaga pseudoflava from various lactones. Can J Microbiol. 1995; 41(13): 60-67.

Povolo S, Casella S. Bacterial production of PHA from lactose and cheese whey permeate. Macromol Symp. 2003; 197(1): 1-10.

Choi MH, Lee HJ, Rho JK, Yoon SC, Nam JD, Lim D, Lenz RW. Biosynthesis and Local Sequence Specific Degradation of Poly (3-hydroxyvalerate-co-4-hydroxybutyrate) in Hydrogenophaga pseudoflava. Biomacromolecules 2003; 4(1): 38-45.

Koller M. Innovative and sustainable approaches in the biotechnological production of polyhydroxyalkanoates from surplus materials. Doctoral thesis 2005; Graz University of Technology, Austria

Cha JY, Hanna MA. Levulinic acid production based on extrusion and pressurized batch reaction. Ind Crops Prod. 2002; 16(2): 109-118.

Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, et al. Production of levulinic acid and use as a platform chemical for derived products. Res Conserv Recy. 2000; 28(3): 227-239.

Girisuta B, Janssen LPBM, Heeres HJ. Green chemicals: A kinetic study on the conversion of glucose to levulinic acid. Chem Eng Res Des. 2006; 84(5): 339-349.

Choi GG, Kim MW, Kim JY, Rhee YH. Production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with high molar fractions of 3-hydroxyvalerate by a threonine-overproducing mutant of Alcaligenes sp. SH-69. Biotechnol. Lett. 2003; 25(9), 665-670.

Gorenflo V, Schmack G, Vogel R, Steinbüchel A. Development for a process for the biotechnolocial large-scale production of 4-hydroxyvalerate-containing polyesters and characterizatio of their physical and mechanical properties. Biomacromolecules 2001; 2(1): 45-57.

Koller M, Bona R, Hermann C, Horvat P, Martinz J, Neto J, et al. Biotechnological production of poly(3-hydroxybutyrate) with Wautersia eutropha by application of green grass juice and silage juice as additional complex substrates. Biocat Biotrans 2005; 23(5): 329-337.

Braunegg G, Sonnleitner BY, Lafferty RM. A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Appl Microbiol Biotechnol. 1978; 6(1): 29-37.

Koller M, Puppi D, Chiellini F, Braunegg G. Comparing chemical and enzymatic Hydrolysis of whey lactose to generate feedstocks for haloarchaeal poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biosynthesis. Int J Pharm Sci Res. 2016; 3(1): IJPSR-112

Doi Y, Tamaki A, Kunioka M, Kazuo S. Biosynthesis of an unusual copolyester (10 mol% 3-hydroxybutyrate and 90 mol% 3-hydroxyvalerate units) in Alcaligenes eutrophus from pentanoic acid. J Chem Soc, Chem Comm. 1987; 21: 1635-1636.

Lefebvre, G., Rocher, M., & Braunegg, G. Effects of low dissolved-oxygen concentrations on poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Alcaligenes eutrophus. Appl Environ Microbiol. 1997; 63(3): 827-833.

Tamaki A, Kunioka M, Soga K. Biosynthesis of terpolyesters of 3‐hydroxybutyrate, 3‐hydroxyvalerate, and 5‐hydroxyvalerate in Alcaligenes eutrophus from 5‐chloropentanoic and pentanoic acids. Macromol Rapid Comm. 1987; 8(12): 631-635.

Chen CW, Don TM, Yen HF. Enzymatic extruded starch as a carbon source for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. Proc Biochem. 2006; 41(11): 2289-2296.

Rodríguez‐Contreras A, Koller M, Miranda de Sousa Dias M, Calafell‐Monfort M, Braunegg G, Marqués‐Calvo MS. High production of poly(3‐hydroxybutyrate) from a wild Bacillus megaterium Bolivian strain. J Appl Microbiol. 2013; 114(5): 1378-1387.




DOI: https://doi.org/10.22037/afb.v4i2.16337

Refbacks

  • There are currently no refbacks.