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Abstract  
 

Article Information 

Substrates' concentration profile was studied in a porous matrix 

containing immobilized amyloglucosidase for glucose production. 

This analysis was performed by using an analytical method called 

Least Square Method, and the results were compared with numerical 

solution. Effects of effective diffusivity, Michael's constant, maximum 

reaction rate and initial substrate concentration were studied on 

Soluble Starch and Dextrin concentration in the spherical support. The 

outcomes revealed that Least Square Method has an excellent 

agreement with numerical solution, and in the center of support, 

substrate concentration is minimum. Increasing of effective diffusivity 

and Michael's constant reduced the Soluble Starch and Dextrin profile 

gradient. 
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1. Introduction 
 

In the past decades, while conventional chemical 

processes have been developed for production and 

purification of products, utilization of enzymes has 

been one of the alternative methodologies to achieve a 

higher efficiency and safety [1-4]. Enzymes are 

immobilized within or on the supports' structure by 

using various methods. Use of these biocatalysts as 

industrial catalysts has been interested, and properties of 

immobilized enzymes (for example, kinetic properties) 

have been described by a variety of methods. Generally, 

reports have mostly concentrated on enzyme derivation 

methods, practical means to use immobilized enzymes 

efficiently, and investigation of the kinetic behavior of 

immobilized enzymes [5-7]. Enzymes immobilization 

can be broadly classified as physical and chemical me- 

 
thods. In physical methods, weak interaction exists 

between the enzyme and the support molecules; 

however, in chemical methods, covalent bonds are 

formed between the enzyme and the artificial support 

[8, 9]. When pretreated support contacts with the 

enzyme solution, the enzyme molecules diffuse into 

the support particles and afterward adsorb or bind 

chemically to the internal surfaces of the support. As a 

consequence of enzyme-support interaction, the 

distribution of the enzyme in the support is generally 

nonuniform, and restricted diffusion phenomena can 

complicate the substrate diffusion within the support 

particles [10-12]. 

The kinetic properties of immobilized enzymes 

such as Michael's constant and effective diffusivity are 
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greatly affected by temperature, as it has a great 

influence on the pore structure and microenvironment 

of the support matrices [13]. 

When immobilized enzymes follow a Michaelis-

Menten equation, the effect of intraparticle diffusion in 

membranes on the kinetic behavior of immobilized 

enzymes has been investigated in terms of effectiveness 

factor, and an approximate equation is obtained for 

effectiveness factor [14]. For understanding the immob-

ilization process, mathematical models have been form-

ulated for single enzyme immobilization in porous 

supports. The model recognized that immobilized 

enzyme profile within the catalyst pellets is nonuni-

form [15, 16]. In the packed-bed reactors, including 

immobilized enzymes in spherical supports, which 

follow Michaelis-Menten kinetics, internal diffusion 

effects are presented by a design equation, which is 

explainable in irreversible and competitive product 

inhibition kinetics. By this equation, the substrate 

profiles are calculated, and the dependence of the 

effectiveness factor along the bioreactor length are 

evaluated and the theoretically predicted values are 

examined to fit well with the experimentally measured 

results [17]. Substrate mass transfer parameters 

including effective diffusivity and overall external 

mass transfer coefficient are estimated by a simple 

optimization methodology for immobilized enzyme 

systems, and the governing differential equation, which 

follows Michaelis-Menten mechanism, is solved using 

a numerical solution [18]. Enzyme is immobilized on 

the internal pore surfaces of a porous matrix, and thus 

the substrate diffuses through the pores, and reacts with 

the immobilized enzyme. A mathematical model is 

presented to explore the influences of various param-

eters on the distribution of immobilized enzyme and 

the amount of enzyme loaded in the porous matrix. 

This model which includes the quasi-steady-state appr-

oximation for diffusion into the support particles is 

solved numerically for different values of parameters 

[19]. 

When substrate balance is written for immobilized 

enzyme on the internal surface of a porous spherical 

support, the derived nonlinear equation can be 

numerically solved using related boundary conditions 

to determine the substrate profile in the support [20]. 

The nonlinear diffusion equation in steady state 

conditions states that reactions in constrained enzyme 

solutions are of interest in biotechnology engineering 

applications. Exact analytical solutions do not exist for 

nonlinear differential equations in most cases. A 

general procedure is demonstrated for solving 

numerically for the substrate concentration profile 

determination utilizing the transformation method [21]. 

The main aim of this paper is to solve mass balance 

differential equation for substrate diffusion in 

immobilized enzyme in spherical support using an 

analytical method. Least square method was used as an 

analytical solution method, and effects of various 

parameters such as effective diffusion coefficient, 

Michaela's constant, maximum reaction rate are 

demonstrated on soluble starch and dextrin concen-

tration as a substrate for glucose production. Since the 

use of analytical methods for dissolution of nonlinear 

differential equations remains unnoticed, the main 

advantages of this study is comparing analytical solute-

ion results with the numerical solution, which confirms 

the high accuracy of the Least Square Method (LSM). 

   

2. Numerical and applied methods 

2.1. Description of the problem 
 

Enzymes are frequently used on porous supports 

in order to contain the enzyme, and allow continued 

catalytic activity. While some of the activity relative to 

the free enzyme is lost, the remaining catalytic activity 

can be utilized in diverse reactors by protection of the 

enzyme on the support media. 

When enzymes are immobilized on the internal 

surface of a porous spherical support, the substrate 

diffuses thorough the pathway among the pores, and 

reacts with the immobilized enzyme. Assume that 

enzymes are uniformly distributed in a spherical 

porous matrix; the reaction kinetics follows Michael-

is-Menten kinetic, and there is no partitioning of the 

substrates between the interior and exterior of the 

porous matrix and external diffusion limitation is neg-

ligible (Figure 1). Assuming steady state condition: 
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Michaelis-Menten equation is defined in moles 

per unit time per unit area as: 
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Assuming that there is no external diffusion 

limitation, Michaelis-Menten equation is defined in 

moles per unit time per unit volume, so: 
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Figure 1. Schematic of the problem (substrate concen-

tration profile in immobilized enzyme in a spherical porous 

matrix).  
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where, is the dimensionless substrate concen-

tration, S0 is the bulk substrate concentration, is the 

dimensionless radius, Km is the Michael's constant, 

Vm is maximum reaction rate, and De is effectiveness 

diffusion coefficient. The appropriate boundary 

conditions are: 
 

1r    :  1S                                                       Eq. 5 

0r    :    ̅   ̅⁄                                               Eq. 6 
 

Most of researchers used numerical method to 

solve this equation; however, in this paper, analytical 

method is used to solve this equation. Generally, for 

clear explanation and solving this problem, we used 

the numerical values presented in Table 1 [18,22,23]. 

Table 1 includes numerical values for glucose 

production from soluble starch and dextrin as a 

substrate by using immobilized Amyloglucosidase in 

the Honeycomb Ceramic Slab and Porous Spherical 

Glass Beads reactors. 

 

2.2. Applied method 
 

 There is an approximation method to solve 

ordinary differential equations (LSM). Consider the 

following differential equation: 
 

    D u x p x                                                  Eq. 7 
 

 Let consider the function u an approximation of, 

which is a linear combination of trial functions: 
 

1

n

i i

i

u u c 


                                                                                       Eq. 8 

 

By substituting this into the differential equation, 

an error or residual will exist: 
 

       0R x D u x p x                               Eq. 9 
 

The notion in LSM is to force the residual to zero, 

so: 
 

    0, 1,2,...,i

X

R x W X dx i n 
                   Eq. 10 

 

Where, is weight function, and n is the number of 

unknown constants in. The result is a system of n 

algebraic equations for obtaining the unknown 

constants. If the continuous summation of all of the 

squared residuals is minimized, the rationale behind 

the LSM’s name can be seen: 
 

     2

X X
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                        Eq. 11 

 

For obtaining the minimum of the function, the 

derivatives of with respect to all constants must be 

zero: 
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By comparing Eqs. ‎(8) and ‎(12), the weight 

functions are obtained as: 
 

          ⁄         Eq. 13 
 

Hatami and Ganji have presented some advanta-

ges of LSM comparing to other numerical methods 

[24,25]. Here, we apply the LSM on the present 

problem. We should first choose a trial function. 

Since the trial function must satisfy the boundary 

conditions (Eq. (5) and (6)), so it will be assumed as: 
 

S(r)=1+c1(1-r2)+ c2(1-r3)+ c3(1-r4)+ c5(1-r6)  

Eq. 14 
 

By combining the above equation with Eq. ‎(3), 

residual function will be found, and via substituting 

the residual function into Eq. ‎(12), a system of 

equation with five equations will appear. Also by 

solving this set of equations, coefficients c1,…,c5 will 

be obtained. The analytical solution of the problem is 

in the following form for f=1, b=1: 
 

 

     S(r)=0.191+0.0798r2)+0.0r3+0.0011r4-0.000001 

r5-0.000001r6   Eq. 15                                                
 

To validate our solution and to find the accuracy 

of the method, we compared the results of the LSM 

and numerical solution in Table 2. The numerical 

solution is performed by using the algebra package 

Maple 15.0 to solve the present case. The package 

uses a fourth–fifth order Runge-Kutta–Fehlberg 

procedure for solving the nonlinear boundary value 

problem (BVP). The algorithm is proved to be precise 

and accurate in solving a wide range of mathematical 

and engineering problems. As shown in Table 2, the 

results of LSM have an excellent accuracy, and order 

of the error is about 10-6 to 10-5. 

 

3. Results and discussion 
 

In this study, LSM was applied as an analytical 

method for determining soluble starch and dextrin 

concentration profile in immobilized Amyloglu-

cosidase in spherical support at various conditions. 

Comparison of dimensionless concentration profile of 

soluble starch and dextrin for glucose production is 

shown in Figure 2 by using the presented Km, Vm and 

De in Table 1 when the initial substrate concentration 

is equal to 50 mol m-3 (S0=50 mol m-3). 

Table 1. The numerical value of model parameters. 

 

Enzyme Product Bioreactor Substrate R(m) 

De 

 
  

 
  

Km 

 
   

  
  

Vm 

 
   

   
  

S0 

 
   

  
  

Amylo-

glucosidase 
Glucose SBR 

Soluble 

Starch 
                    0.73 0.07                     

Amylo-

glucosidase 
Glucose RDBR Dextrin          

           
 

1.25 2.4                     

𝑟̅ 
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Table 2. Comparison of the LSM and numerical solution 

results for 1, 1   .
 

 

Radius LSM (Eq. 15)  
Numerical 

solution 
Error 

r=0 0.919109 0.919095 1.42E-5 

r=0.1 0.919908 0.919914 6.20E-6 

r=0.2 0.922304 0.922294 1.00E-5 

r=0.3 0.926302 0.926289 1.29E-5 

r=0.4 0.931908 0.931897 1.13E-5 

r=0.5 0.939132 0.939122 9.95E-6 

r=0.6 0.947985 0.947975 9.62E-6 

r=0.7 0.958480 0.958473 6.90E-6 

r=0.8 0.970635 0.970627 7.48E-6 

r=0.9 0.984468 0.984456 1.18E-5 

r=1 1.0 1.0 0.0 

 

As regards to Figure 2, it is obvious that soluble 

starch and dextrin concentrations are zero in the 

center of the spherical support, and the soluble 

starch available in the bulk media diffuses more 

than dextrin into the spherical support; thus, the 

dextrin concentration gradient is more than that of 

soluble starch. In other words, in specified radius of 

porous support, concentration of soluble starch is 

more than dextrin concentration. 

Regarding that effective diffusion coefficient is 

the function of media condition such as temperature, 

Equation (3) shows that concentration profile is a 

function of S0, Km, Vm and De. In constant value of 

initial concentration, enzymatic reaction rate is a 

function of Km and Vm, and by reducing Km or 

increasing Vm, the rate of enzymatic reaction 

increases, and consequently, the substrate's 

concentration reduces in various layers of the 

spherical support.  

Effect of the soluble starch's effective diffusivity 

coefficient (De) on substrate concentration profile is 

shown in Figure 3a when: 

  
                  

                   

                  . With effective diffusivity 

increasing, substrate diffuses further and further in 

the interior layers of support and thus substrate 

profile gradient decreases when De increases 

from                                 . In 

Figure 3b, the effect of   
  on dextrin concentration 

profile is demonstrated when 

  
                  

                   

                  .   

Diffusion coefficient reduction of dextrin 

increases the difference of substrate concentration 

between the bulk medium and the center of immob-

ilized enzyme support due to increasing of mass 

transport resistance through the immobilized enzyme 

support matrices so that the substrate concentration 

equals zero in the center of the support when 

  
                        -1 and r= 0.7×10-4 

m (see Figure 3b).  

 
 

 

Figure 2. Comparison of soluble starch and dextrin 

concentration profile in the spherical support. 

 

 

Figure 3a. Effect of 
s

eD on substrate concentration 

profile for immobilized amyloglucosidase in the support.  
 

 
 

Figure 3b. Effect of  DD
e on substrate concentration 

profile for immobilized amyloglucosidase in the support. 

 

The Michaelis-Menten constant is the substrate 

concentration, which is at half-maximum in the 

reaction rate. The value of Km is related to the 

substrate and enzyme, as well as conditions such as 

pH and temperature [26]. Effects of Km have been 

show on soluble starch and dextrin concentration as 

substrate in Figures 4a and 4b, when (       
   

  ) 

and the numerical values given in Table 1 are used 

for Vm and De. A low value of Km suggests that the 

enzyme has a high affinity to react with the substrate; 

so, the substrate's concentration should be decreased 

with reduction of Km.  
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Since Vm is dependent on concentration of 

enzyme not to substrate, so effect of maximum 

reaction rate on substrate profile is demonstrated in 

Figures 5a and 5b when S0=10 mol m-3. With 

increasing of Vm value, soluble starch concentration 

reduces in the porous support and thus the substrate 

profile gradient increases. Dextrin concentration 

profile in various values of maximum reaction rate 

is shown in Figure 5b. In the center of the support, 

substrate's concentration is zero, and the procedure 

of substrate profile gradient is similar to that of 

soluble starch with variation of Vm.  

Based on Fick's law, by increasing the initial 

concentration of substrate in the bulk medium, 

concentration profile gradient increases between the 

center of the support and the bulk medium, and so the 

substrate diffuses into the support more quickly [27]. 

As seen in Figures 6a and 6b, initial substrate 

concentration is effective on the soluble starch and 

dextrin concentration profile. The numerical values 

(Table 1) are used for evaluating the effects of initial 

substrate. Substrate concentration approaches to 0 in 

half radius of the support when S0=50 mol m-3, and 

increasing of the initial concentration increases the 

substrate concentration in the layers of matrices. 

 

 
 

Figure 4a. Effect of    on soluble starch concentration 

profile for immobilized amyloglucosidase in the 

honeycomb ceramic slab. 
  

 
 

Figure 5a. Effect of maximum reaction rate (Vm) on the 

soluble starch concentration profile. 
 

 

 

Figure 6a. Effect of initial substrate concentration (S0) on 

the soluble starch concentration profile. 

 

 
Figure 4b. Effect of    on dextrin concentration profile 

for immobilized amyloglucosidase in the porous spherical 

glass beads. 
 

 
 

Figure 5b. Effect of maximum reaction rate (Vm) on the 

dextrin concentration profile. 

 

 
 

Figure 6b. Effect of initial substrate concentration (S0) on 

the dextrin concentration profile. 

 

S
[m

o
l 

m
-3

]
 S

[m
o

l 
m

-3
]

 
S

[m
o

l 
m

-3
] 

S
[m

o
l 

m
-3

]
 

S
[m

o
l 

m
-3

]
 

S
[m

o
l 

m
-3

]
 

r×10-4[m] 

r×10-4[m] 

r×10-4[m] 
r×10-4[m] 

r×10-4[m] 

r×10-4[m] 



Numerical Analysis of Substrate- Immobilized Enzyme Reaction 
 

 

54                                                                                                          Appl Food Biotechnol, Vol. 2, No. 4 (2015) 
 

4. Conclusion 
 

Biocatalysis is an important tool for synthesis of 

chemicals. It mostly uses occurring enzymes or 

micro-organisms as catalysts. Due to mass balance, 

differential equation is non-linear in quasi-steady 

state for immobilized enzyme in spherical porous 

matrix. A significant challenge is analytical solution 

of this equation. In this study, the effects of various 

parameters such as effective diffusivity coefficient of 

substrates, maximum reaction rate, Michael's constant 

and initial concentration of substrate were studied on 

soluble starch and dextrin profile for glucose produc-

tion using amyloglucosidase and analysis by LSM as 

analytical approach. In spherical support of immobilized 

enzyme, with approaching to the center of porous 

matrix, the substrate's concentration reduces and its 

gradient is function of media and substrate-enzyme 

properties. Substrate concentration gradient reduces 

by increasing the effective diffusivity and Michael's 

constant, but reducing the maximum reaction rate 

decreases the slope of substrate profile within the 

spherical support matrix. By increasing the initial 

concentration of substrate in the bulk solution, the 

concentration of soluble starch and dextrin increases 

in various layers of the spherical support. The results 

further showed that LSM and numerical solution had 

an excellent agreement. 
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Table 3. Unified nomenclature for LSM analysis. 

 

 

eD  effective diffusivity of substrate 0S  initial substrate concentration 

D

eD
 

effective diffusivity of dextrin S  dimensionless substrate concentration  

s

eD
 

effective diffusivity of soluble starch mV  maximum reaction rate 

mK  Michael's constant 
D

mV  maximum reaction rate of dextrin 

D

mK
 

Michael's constant for dextrin 
S

mV  maximum reaction rate of soluble starch 

s

mK
 

Michael's constant for soluble starch 
W(X) 
 

SBR 
 

weight function 
 

Stirred Batch Reactor 
 

r radius RDBR  Recycling Differential Batch Reactor 

R  radius of support Greek symbols 

r  dimensionless radius f thiele modulus 

S substrate concentration b dimensionless Michael's constant 
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